Skip to main content
Top

2014 | OriginalPaper | Chapter

2. Size Effects in Micro-scaled Plastic Deformation

Authors : Ming Wang Fu, Wai Lun Chan

Published in: Micro-scaled Products Development via Microforming

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microforming, the so-called micro-scaled plastic deformation, is to fabricate the parts or part features with the dimensions in submillimeter scale. The process has great potential to become a promising micromanufacturing method for its unique characteristics for fabrication of micro-formed parts [1]. Although a comprehensive macroforming knowledge system to support the design of process, tooling, and the metal forming part has been well established and widely used [26], and the development of microparts by microforming, however, cannot totally be based on the traditional macroforming knowledge and the design and development paradigm of macro-formed parts as the size effect affected deformation behaviors and process performance in microforming are different from the ones in macroforming [79]. In microforming, the material deformation behavior is characterized by a few grains in the deformation zone. Different properties of grains make the deformation behavior inhomogeneous and difficult to predict. In addition, there are interactive effects between workpiece size and microstructure on flow stress, flow behavior, fracture behavior, elastic recovery, and surface roughening, etc. These size effect-related deformation phenomena further affect the performance of microforming system and product quality in terms of deformation load, stability of forming system, defect formation, dimensional accuracy, surface finish, and the mechanical properties of the micro-formed parts. This chapter aims at discussing the size effect-related deformation behaviors and the newly identified phenomena, which will help understand the mechanisms and fundamentals of the size effects in microforming processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44CrossRef Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44CrossRef
2.
go back to reference Chan WL, Fu MW, Lu J, Chan LC (2009) Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. J Mater Process Technol 209(11):5077–5086CrossRef Chan WL, Fu MW, Lu J, Chan LC (2009) Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. J Mater Process Technol 209(11):5077–5086CrossRef
3.
go back to reference Chan WL, Fu MW, Lu J (2010) FE simulation-based folding defect prediction and avoidance in forging of axially symmetrical flanged components. J Manufact Sci Eng Trans ASME 132(5) Chan WL, Fu MW, Lu J (2010) FE simulation-based folding defect prediction and avoidance in forging of axially symmetrical flanged components. J Manufact Sci Eng Trans ASME 132(5)
4.
go back to reference Fu MW, Li H, Lu J, Lu SQ (2009) Numerical study on the deformation behaviors of the flexible die forming by using viscoplastic pressure-carrying medium. Comput Mater Sci 46(4):1058–1068CrossRef Fu MW, Li H, Lu J, Lu SQ (2009) Numerical study on the deformation behaviors of the flexible die forming by using viscoplastic pressure-carrying medium. Comput Mater Sci 46(4):1058–1068CrossRef
5.
go back to reference Fu MW, Lu J, Chan WL (2009) Die fatigue life improvement through the rational design of metal-forming system. J Mater Process Technol 209(2):1074–1084CrossRef Fu MW, Lu J, Chan WL (2009) Die fatigue life improvement through the rational design of metal-forming system. J Mater Process Technol 209(2):1074–1084CrossRef
6.
go back to reference Fu MW, Yong MS, Tong KK, Muramatsu T (2006) A methodology for evaluation of metal forming system design and performance via CAE simulation. Int J Prod Res 44(6):1075–1092CrossRef Fu MW, Yong MS, Tong KK, Muramatsu T (2006) A methodology for evaluation of metal forming system design and performance via CAE simulation. Int J Prod Res 44(6):1075–1092CrossRef
7.
go back to reference Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. Cirp Ann Manuf Technol 58(2):566–587CrossRef Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. Cirp Ann Manuf Technol 58(2):566–587CrossRef
8.
go back to reference Messner A, Engel U, Kals R, Vollertsen F (1994) Size effect in the Fe-simulation of micro-forming processes. J Mater Process Technol 45(1–4):371–376CrossRef Messner A, Engel U, Kals R, Vollertsen F (1994) Size effect in the Fe-simulation of micro-forming processes. J Mater Process Technol 45(1–4):371–376CrossRef
9.
go back to reference Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1–3):70–79CrossRef Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1–3):70–79CrossRef
10.
go back to reference Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann ManufTechnol 45(1):277–282CrossRef Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann ManufTechnol 45(1):277–282CrossRef
11.
go back to reference Geiger M, Meßner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng Res Devel 4(1):55–58 Geiger M, Meßner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng Res Devel 4(1):55–58
12.
go back to reference Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–628CrossRef Barbier C, Thibaud S, Richard F, Picart P (2009) Size effects on material behavior in microforming. Int J Mater Form 2:625–628CrossRef
13.
go back to reference Raulea LV, Govaert LE, Baaijens FPT (1999) Grain and specimen size effects in processing metal sheets. In: Sixth international conference on technology of plasticity. Springer, Nuremberg Raulea LV, Govaert LE, Baaijens FPT (1999) Grain and specimen size effects in processing metal sheets. In: Sixth international conference on technology of plasticity. Springer, Nuremberg
14.
go back to reference Chen FK, Tsai JW (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177(1–3):146–149CrossRefMathSciNet Chen FK, Tsai JW (2006) A study of size effect in micro-forming with micro-hardness tests. J Mater Process Technol 177(1–3):146–149CrossRefMathSciNet
15.
go back to reference Liu JG, Fu MW, Lu J, Chan WL (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614CrossRef Liu JG, Fu MW, Lu J, Chan WL (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614CrossRef
16.
go back to reference Chan WL, Fu MW, Lu J (2011) The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater Des 32(1):198–206CrossRef Chan WL, Fu MW, Lu J (2011) The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater Des 32(1):198–206CrossRef
17.
go back to reference Vollertsen F, Niehoff HS, Hu Z (2006) State of the art in micro forming. Int J Mach Tools Manuf 46(11):1172–1179CrossRef Vollertsen F, Niehoff HS, Hu Z (2006) State of the art in micro forming. Int J Mach Tools Manuf 46(11):1172–1179CrossRef
18.
go back to reference Meyers MA, Ashworth E (1982) A Model for the Effect of Grain-Size on the Yield Stress of Metals. Phil Mag Phys Condens A Matter Struct Defects Mech Prop 46(5):737–759 Meyers MA, Ashworth E (1982) A Model for the Effect of Grain-Size on the Yield Stress of Metals. Phil Mag Phys Condens A Matter Struct Defects Mech Prop 46(5):737–759
19.
go back to reference Kim GY, Ni J, Koc M (2007) Modeling of the size effects on the behavior of metals in microscale deformation processes. J Manuf Sci Eng Trans ASME 129(3):470–476CrossRef Kim GY, Ni J, Koc M (2007) Modeling of the size effects on the behavior of metals in microscale deformation processes. J Manuf Sci Eng Trans ASME 129(3):470–476CrossRef
20.
go back to reference Mahabunphachai S, Koc M (2008) Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tools Manuf 48(9):1014–1029CrossRef Mahabunphachai S, Koc M (2008) Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales. Int J Mach Tools Manuf 48(9):1014–1029CrossRef
21.
go back to reference Chan WL, Fu MW, Yang B (2012) Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Mater Sci Eng A 534:374–383CrossRef Chan WL, Fu MW, Yang B (2012) Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Mater Sci Eng A 534:374–383CrossRef
22.
go back to reference Hug E, Keller C (2010) Intrinsic Effects due to the Reduction of Thickness on the Mechanical Behavior of Nickel Polycrystals. Metall Mater Trans A Phys Metall Mater Sci 41A(10):2498–2506CrossRef Hug E, Keller C (2010) Intrinsic Effects due to the Reduction of Thickness on the Mechanical Behavior of Nickel Polycrystals. Metall Mater Trans A Phys Metall Mater Sci 41A(10):2498–2506CrossRef
23.
go back to reference Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174(1):25–28 Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174(1):25–28
24.
go back to reference Hall EO (1951) The deformation and ageing of mild Steel III—discussion of results. Proc Phys Soc London Sect B 64(381):747–753CrossRef Hall EO (1951) The deformation and ageing of mild Steel III—discussion of results. Proc Phys Soc London Sect B 64(381):747–753CrossRef
25.
go back to reference Armstrong R, Douthwaite RM, Codd I, Petch NJ (1962) Plastic deformation of polycrystalline aggregates. Phil Mag 7(73):45–58CrossRef Armstrong R, Douthwaite RM, Codd I, Petch NJ (1962) Plastic deformation of polycrystalline aggregates. Phil Mag 7(73):45–58CrossRef
26.
go back to reference Gau JT, Principe C, Wang JW (2007) An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Technol 184(1–3):42–46CrossRef Gau JT, Principe C, Wang JW (2007) An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Technol 184(1–3):42–46CrossRef
27.
go back to reference Miyazaki S, Shibata K, Fujita H (1979) Effect of specimen thickness on mechanical-properties of polycrystalline aggregates with various grain sizes. Acta Metall 27(5):855–862CrossRef Miyazaki S, Shibata K, Fujita H (1979) Effect of specimen thickness on mechanical-properties of polycrystalline aggregates with various grain sizes. Acta Metall 27(5):855–862CrossRef
28.
go back to reference Gau JT, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1–3):7–10CrossRef Gau JT, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1–3):7–10CrossRef
29.
go back to reference Hansen N (2005) Boundary strengthening over five length scales. Adv Eng Mater 7(9):815–821CrossRef Hansen N (2005) Boundary strengthening over five length scales. Adv Eng Mater 7(9):815–821CrossRef
30.
go back to reference Chan WL, Fu MW (2012) Studies of the interactive effect of specimen and grain sizes on the plastic deformation behavior in microforming. Int J Adv Manuf Technol 62(9):989–1000 Chan WL, Fu MW (2012) Studies of the interactive effect of specimen and grain sizes on the plastic deformation behavior in microforming. Int J Adv Manuf Technol 62(9):989–1000
31.
go back to reference Hirth JP (1972) Influence of grain-boundaries on mechanical properties. Metall Trans 3(12):3047–3067CrossRef Hirth JP (1972) Influence of grain-boundaries on mechanical properties. Metall Trans 3(12):3047–3067CrossRef
32.
go back to reference Mecking H (1979) Deformation of polycrystals. In: Haasen P, Gerold V, Kostorz G (eds) Proceedings of the 5th international conference on the strength of metals and alloys, 1979, Aachen, Federal Republic of Germany, Pergamon, pp 1573–1594 Mecking H (1979) Deformation of polycrystals. In: Haasen P, Gerold V, Kostorz G (eds) Proceedings of the 5th international conference on the strength of metals and alloys, 1979, Aachen, Federal Republic of Germany, Pergamon, pp 1573–1594
33.
go back to reference Feaugas X (1999) On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress. Acta Mater 47(13):3617–3632CrossRef Feaugas X (1999) On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress. Acta Mater 47(13):3617–3632CrossRef
34.
go back to reference Kocks UF (1976) Laws for Work-Hardening and Low-Temperature Creep. J Eng Mater Technol Trans ASME 98(1):76–85CrossRef Kocks UF (1976) Laws for Work-Hardening and Low-Temperature Creep. J Eng Mater Technol Trans ASME 98(1):76–85CrossRef
35.
go back to reference Kocks UF (1970) Relation between polycrystal deformation and single-crystal deformation. Metall Trans 1(5):1121–1143 Kocks UF (1970) Relation between polycrystal deformation and single-crystal deformation. Metall Trans 1(5):1121–1143
36.
go back to reference Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys 274(12):573–587CrossRef Voigt W (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys 274(12):573–587CrossRef
37.
go back to reference Benson DJ, Fu HH, Meyers MA (2001) On the effect of grain size on yield stress: extension into nanocrystalline domain. Mater Sci Eng A Struct Mater Prop Microstruct Process 319:854–861CrossRef Benson DJ, Fu HH, Meyers MA (2001) On the effect of grain size on yield stress: extension into nanocrystalline domain. Mater Sci Eng A Struct Mater Prop Microstruct Process 319:854–861CrossRef
38.
go back to reference Fu HH, Benson DJ, Meyers MA (2001) Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater 49(13):2567–2582CrossRef Fu HH, Benson DJ, Meyers MA (2001) Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater 49(13):2567–2582CrossRef
39.
go back to reference Van Swygenhoven H, Spaczer M, Caro A (1999) Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater 47(10):3117–3126CrossRef Van Swygenhoven H, Spaczer M, Caro A (1999) Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater 47(10):3117–3126CrossRef
40.
go back to reference Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRef Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRef
41.
go back to reference Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563CrossRef Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667):561–563CrossRef
42.
go back to reference Kim HS (1998) A composite model for mechanical properties of nanocrystalline materials. Scripta Mater 39(8):1057–1061CrossRef Kim HS (1998) A composite model for mechanical properties of nanocrystalline materials. Scripta Mater 39(8):1057–1061CrossRef
43.
go back to reference Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis EC (1995) A simple, mixtures-based model for the grain-size dependence of strength in nanophase metals. Nanostruct Mater 5(4):441–448CrossRef Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis EC (1995) A simple, mixtures-based model for the grain-size dependence of strength in nanophase metals. Nanostruct Mater 5(4):441–448CrossRef
44.
go back to reference Zhou JQ, Li ZH, Zhu RT, Li YL, Zhang ZZ (2008) A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials. J Mater Process Technol 197(1–3):325–336CrossRef Zhou JQ, Li ZH, Zhu RT, Li YL, Zhang ZZ (2008) A mixtures-based model for the grain size dependent mechanical behavior of nanocrystalline materials. J Mater Process Technol 197(1–3):325–336CrossRef
45.
go back to reference Drucker DC (1950) Some implications of work hardening and ideal plasticity. Q Appl Math 7:411–418MATHMathSciNet Drucker DC (1950) Some implications of work hardening and ideal plasticity. Q Appl Math 7:411–418MATHMathSciNet
46.
go back to reference Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37(2):445–456CrossRef Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37(2):445–456CrossRef
47.
go back to reference Jiang B, Weng GJ (2004) A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J Mech Phys Solids 52(5):1125–1149CrossRefMATH Jiang B, Weng GJ (2004) A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J Mech Phys Solids 52(5):1125–1149CrossRefMATH
48.
go back to reference Jiang B, Weng GJ (2004) A theory of compressive yield strength of nano-grained ceramics. Int J Plast 20(11):2007–2026CrossRefMATH Jiang B, Weng GJ (2004) A theory of compressive yield strength of nano-grained ceramics. Int J Plast 20(11):2007–2026CrossRefMATH
49.
go back to reference Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM—J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58CrossRefMATH Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM—J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58CrossRefMATH
50.
go back to reference Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. Cirp Annal Manuf Technol 50(2):445–462CrossRef Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. Cirp Annal Manuf Technol 50(2):445–462CrossRef
51.
go back to reference Kals R, Pucher HJ, Vollertsen F (1995) Effects of specimen size and geometry in metal forming. In: 2nd international conference on advances in materials and processing technologies, Dublin Kals R, Pucher HJ, Vollertsen F (1995) Effects of specimen size and geometry in metal forming. In: 2nd international conference on advances in materials and processing technologies, Dublin
52.
go back to reference Shen Y, Yu HP, Ruan XY (2006) Discussion and prediction on decreasing flow stress scale effect. Trans Nonferrous Metal Soc China 16(1):132–136CrossRef Shen Y, Yu HP, Ruan XY (2006) Discussion and prediction on decreasing flow stress scale effect. Trans Nonferrous Metal Soc China 16(1):132–136CrossRef
53.
go back to reference Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2009) Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater Sci Eng A Struct Mater Prop Microstruct Process 526(1–2):93–99CrossRef Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2009) Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater Sci Eng A Struct Mater Prop Microstruct Process 526(1–2):93–99CrossRef
54.
go back to reference Peng LF, Liu F, Ni J, Lai XM (2007) Size effects in thin sheet metal forming and its elastic-plastic constitutive model. Mater Des 28(5):1731–1736CrossRef Peng LF, Liu F, Ni J, Lai XM (2007) Size effects in thin sheet metal forming and its elastic-plastic constitutive model. Mater Des 28(5):1731–1736CrossRef
55.
go back to reference Lai XM, Peng LF, Hu P, Lan SH, Ni J (2008) Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput Mater Sci 43(4):1003–1009CrossRef Lai XM, Peng LF, Hu P, Lan SH, Ni J (2008) Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput Mater Sci 43(4):1003–1009CrossRef
56.
go back to reference Schmid E, Boas W (1968) Plasticity of crystals, with special reference to metals. Chapman and Hall, London, p 353 Schmid E, Boas W (1968) Plasticity of crystals, with special reference to metals. Chapman and Hall, London, p 353
57.
go back to reference Sachs G (1928) Zur Ableitung einer Fliessbedingung. Zeichschrift Ver Dtsch Ing 72:734–736 Sachs G (1928) Zur Ableitung einer Fliessbedingung. Zeichschrift Ver Dtsch Ing 72:734–736
58.
go back to reference Taylor GI (1938) Plastic strains in metals. J Inst Met 62:307–324 Taylor GI (1938) Plastic strains in metals. J Inst Met 62:307–324
59.
go back to reference Kocks UK, Canova GR (1981) How many slip systems, and which? In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark Kocks UK, Canova GR (1981) How many slip systems, and which? In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark
60.
go back to reference Leffers T (1981) Microstructures and mechanisms of polycrystal deformation at low temperature. In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark Leffers T (1981) Microstructures and mechanisms of polycrystal deformation at low temperature. In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark
61.
go back to reference Eichenhueller B, Egerer E, Engel U (2007) Microforming at elevated temperature—forming and material behaviour. Int J Adv Manuf Technol 33(1–2):119–124CrossRef Eichenhueller B, Egerer E, Engel U (2007) Microforming at elevated temperature—forming and material behaviour. Int J Adv Manuf Technol 33(1–2):119–124CrossRef
62.
go back to reference Egerer E, Engel U (2004) Process characterization and material flow in microforming at elevated temperatures. J Manuf Process 6(1):1–6CrossRef Egerer E, Engel U (2004) Process characterization and material flow in microforming at elevated temperatures. J Manuf Process 6(1):1–6CrossRef
63.
go back to reference Simons G, Weippert C, Dual J, Villain J (2006) Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A Struct Mater Prop Microstruct Process 416(1–2):290–299CrossRef Simons G, Weippert C, Dual J, Villain J (2006) Size effects in tensile testing of thin cold rolled and annealed Cu foils. Mater Sci Eng A Struct Mater Prop Microstruct Process 416(1–2):290–299CrossRef
64.
go back to reference Parasiz SA, VanBenthysen R, Kinsey BL (2010) Deformation size effects due to specimen and grain size in microbending. J Manuf Sci Eng Trans ASME 132(1):011018CrossRef Parasiz SA, VanBenthysen R, Kinsey BL (2010) Deformation size effects due to specimen and grain size in microbending. J Manuf Sci Eng Trans ASME 132(1):011018CrossRef
65.
go back to reference Ebrahimi F, Ahmed Z, Li HQ (2006) Tensile properties of electrodeposited nanocrystalline FCC metals. Mater Manuf Processes 21(7):687–693CrossRef Ebrahimi F, Ahmed Z, Li HQ (2006) Tensile properties of electrodeposited nanocrystalline FCC metals. Mater Manuf Processes 21(7):687–693CrossRef
66.
go back to reference Klein M, Hadrboletz A, Weiss B, Khatibi G (2001) The ‘size effect’ on the stress-strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A Struct Mater Prop Microstruct Process 319:924–928CrossRef Klein M, Hadrboletz A, Weiss B, Khatibi G (2001) The ‘size effect’ on the stress-strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng A Struct Mater Prop Microstruct Process 319:924–928CrossRef
67.
go back to reference Henning M, Vehoff H (2007) Statistical size effects based on grain size and texture in thin sheets. Mater Sci Eng A Struct Mater Prop Microstruct Process 452:602–613CrossRef Henning M, Vehoff H (2007) Statistical size effects based on grain size and texture in thin sheets. Mater Sci Eng A Struct Mater Prop Microstruct Process 452:602–613CrossRef
68.
go back to reference Chin GY, Mammel WL (1967) Computer solutions of the Taylor analysis for axisymmetric flow. Trans TMS-AIME 239:1400–1405 Chin GY, Mammel WL (1967) Computer solutions of the Taylor analysis for axisymmetric flow. Trans TMS-AIME 239:1400–1405
69.
go back to reference Fu MH, Chan KC, Lee WB, Chan LK (1997) Springback in the roller forming of integrated circuit leadframes. J Mater Process Technol 66(1–3):107–111CrossRef Fu MH, Chan KC, Lee WB, Chan LK (1997) Springback in the roller forming of integrated circuit leadframes. J Mater Process Technol 66(1–3):107–111CrossRef
70.
go back to reference Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1–4):53–61CrossRef Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1–4):53–61CrossRef
71.
go back to reference Chan WL, Fu MW (2012) Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol 212(7):1501–1512CrossRef Chan WL, Fu MW (2012) Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol 212(7):1501–1512CrossRef
72.
go back to reference Chen GN, Shen H, Hu SU, Baudelet B (1990) Roughening of the free surfaces of metallic sheets during stretch forming. Mater Sci Eng A Struct Mater Prop Microstruct Process 128(1):33–38CrossRef Chen GN, Shen H, Hu SU, Baudelet B (1990) Roughening of the free surfaces of metallic sheets during stretch forming. Mater Sci Eng A Struct Mater Prop Microstruct Process 128(1):33–38CrossRef
73.
go back to reference Chandrasekaran D, Nygards M (2003) A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel. Acta Mater 51(18):5375–5384CrossRef Chandrasekaran D, Nygards M (2003) A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel. Acta Mater 51(18):5375–5384CrossRef
74.
go back to reference Bretheau T, Caldemaison D (1981) Test of mechanical interaction models between polycrystal grains by means of local strain measurements. In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark Bretheau T, Caldemaison D (1981) Test of mechanical interaction models between polycrystal grains by means of local strain measurements. In: 2nd Risø international symposium on metallurgy and materials science. Risø National Laboratory, Denmark
75.
go back to reference Urie VM, Wain HL (1952) Plastic deformation of coarse-grained aluminum. J Inst Met 81:153–159 Urie VM, Wain HL (1952) Plastic deformation of coarse-grained aluminum. J Inst Met 81:153–159
76.
go back to reference Beaudoin AJ, Acharya A, Chen SR, Korzekwa DA, Stout MG (2000) Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals. Acta Mater 48(13):3409–3423CrossRef Beaudoin AJ, Acharya A, Chen SR, Korzekwa DA, Stout MG (2000) Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals. Acta Mater 48(13):3409–3423CrossRef
77.
go back to reference Hurley PJ, Humphreys FJ (2003) The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater 51(4):1087–1102CrossRef Hurley PJ, Humphreys FJ (2003) The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater 51(4):1087–1102CrossRef
78.
go back to reference Wu PD, Lloyd DJ (2004) Analysis of surface roughening in AA6111 automotive sheet. Acta Mater 52(7):1785–1798CrossRef Wu PD, Lloyd DJ (2004) Analysis of surface roughening in AA6111 automotive sheet. Acta Mater 52(7):1785–1798CrossRef
79.
go back to reference Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of Grain Anisotropy on Limit Strains in Biaxial Stretching .2. Sheets of cubic metals and alloys with well-developed preferred orientations. Metall Trans A Phys Metall Mater Sci 12(9):1603–1611 Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of Grain Anisotropy on Limit Strains in Biaxial Stretching .2. Sheets of cubic metals and alloys with well-developed preferred orientations. Metall Trans A Phys Metall Mater Sci 12(9):1603–1611
80.
go back to reference Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bull Jpn Soc Mech Eng 14(68):171–177CrossRef Osakada K, Oyane M (1971) On the roughening of free surface in deformation processes. Bull Jpn Soc Mech Eng 14(68):171–177CrossRef
81.
go back to reference Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A 528(25–26):7674–7683CrossRef Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A 528(25–26):7674–7683CrossRef
82.
go back to reference Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater Sci Eng A 527(24–25):6638–6648CrossRef Chan WL, Fu MW, Lu J, Liu JG (2010) Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater Sci Eng A 527(24–25):6638–6648CrossRef
83.
go back to reference Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746CrossRef Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746CrossRef
84.
go back to reference Chan WL, Fu MW (2012) Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A 556:60–67CrossRef Chan WL, Fu MW (2012) Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A 556:60–67CrossRef
85.
go back to reference Barlow CYJ, Bay B, Hansen N (1985) A comparative investigation of surface relief structures and dislocation microstructures in cold-rolled aluminum. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 51(2):253–275 Barlow CYJ, Bay B, Hansen N (1985) A comparative investigation of surface relief structures and dislocation microstructures in cold-rolled aluminum. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 51(2):253–275
Metadata
Title
Size Effects in Micro-scaled Plastic Deformation
Authors
Ming Wang Fu
Wai Lun Chan
Copyright Year
2014
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6326-8_2