Skip to main content
Top
Published in: e & i Elektrotechnik und Informationstechnik 7/2019

31-10-2019 | Originalarbeit

Skill-based programming of complex robotic assembly tasks for industrial application

Authors: Sharath Chandra Akkaladevi, Andreas Pichler, Matthias Plasch, Markus Ikeda, Michael Hofmann

Published in: e+i Elektrotechnik und Informationstechnik | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, a paradigm shift is underway as robots leave their typical application field and move into domains that have been untouched by robotic automation. These new kinds of automation systems allow more product variations, smaller life cycles, smaller batch sizes and pave the way from mass production to mass customization. This is due to completely new breed of safe robot technology but also novel ways of setting up new applications like e.g. kinesthetic programming. However, the topic of reducing the programming effort for complex tasks using natural modes of communication is still open. This paper addresses the key developments in this field, shows different ways of programming, and gives relevant use cases in industrial assembly. The technology coverage starts with an online workflow editor called XROB that allows easy-to-use setup of process workflows and related skill parameters. However, in order to reduce the programming effort, a novel way to demonstrate process trajectories by using instrumented hand guided process tools is presented. Finally, the paper gives an overview of a promising approach that allows programming without touching the robot just by demonstrating the process by an expert. The semantic relations between activities executed by the human and robot skills are captured to learn the task sequence of the assembly process. The acquired process knowledge is refined to execute robotic tasks with the help of an interactive graphical user interface (GUI). The system queries the user for feedback, asking for specific information to help the robot complete the task at hand. The given examples show the usability of flexible programming tools in the automation chain and the presented results provide strong evidence of the technological potential in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Vive.com. (2019). VIVE™ – VIVE Tracker. [online] Available at: https://​www.​vive.​com/​eu/​vive-tracker [Accessed 10 Aug. 2019].
 
2
Ati-ia.com. (2019). ATI Industrial Automation: F/T Sensor Delta. [online] Available at: https://​www.​ati-ia.​com [Accessed 10 Aug. 2019].
 
3
KUKA AG. (2019). LBR iiwa – KUKA AG. [online] Available at: https://​www.​kuka.​com/​en-at/​products/​robotics-systems/​industrial-robots/​lbr-iiwa [Accessed 10 Aug. 2019].
 
4
Swi-prolog.org. (2019). [online] Available at: https://​www.​swi-prolog.​org/​ [Accessed 10 Aug. 2019].
 
5
Medium. (2019). Modeling Data with Hypergraphs. [online] Available at: https://​blog.​grakn.​ai/​modelling-data-with-hypergraphs-edff1e12edf0 [Accessed 13 Aug. 2019].
 
Literature
1.
go back to reference Pedersen, M. R., et al. (2016): Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput.-Integr. Manuf., 37, 282–291. CrossRef Pedersen, M. R., et al. (2016): Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput.-Integr. Manuf., 37, 282–291. CrossRef
2.
go back to reference Pichler, A., Akkaladevi, S. C., et al. (2017): Towards shared autonomy for robotic tasks in manufacturing. In Proc. FAIM 2017, Modena, Italy. Pichler, A., Akkaladevi, S. C., et al. (2017): Towards shared autonomy for robotic tasks in manufacturing. In Proc. FAIM 2017, Modena, Italy.
3.
go back to reference Argall, B. D., Chernova, S., Veloso, M., Browning, B. (2009): A survey of robot learning from demonstration. Robot. Auton. Syst., 57(5), 469–483. CrossRef Argall, B. D., Chernova, S., Veloso, M., Browning, B. (2009): A survey of robot learning from demonstration. Robot. Auton. Syst., 57(5), 469–483. CrossRef
4.
go back to reference Kartoun, U., Stern, H., Edan, Y. (2010): A human-robot collaborative reinforcement learning algorithm. J. Intell. Robot. Syst., 60(2), 217–239. CrossRef Kartoun, U., Stern, H., Edan, Y. (2010): A human-robot collaborative reinforcement learning algorithm. J. Intell. Robot. Syst., 60(2), 217–239. CrossRef
5.
go back to reference Ramirez-Amaro, K., Beetz, M., Cheng, G. (2017): Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artif. Intell., 247, 95–118. MathSciNetCrossRef Ramirez-Amaro, K., Beetz, M., Cheng, G. (2017): Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artif. Intell., 247, 95–118. MathSciNetCrossRef
6.
go back to reference Mollard, Y., Munzer, T., Baisero, A., Toussaint, M., Lopes, M. (2015): Robot programming from demonstration, feedback and transfer. In 2015 IEEE/RSJ international conference on intelligent robots and systems, IROS, Hamburg (pp. 1825–1831). Mollard, Y., Munzer, T., Baisero, A., Toussaint, M., Lopes, M. (2015): Robot programming from demonstration, feedback and transfer. In 2015 IEEE/RSJ international conference on intelligent robots and systems, IROS, Hamburg (pp. 1825–1831).
8.
go back to reference Akkaladevi, S. C., Plasch, M., Eitzinger, C., Pichler, A., Rinner, B. (2018): Towards a context enhanced framework for multi object tracking in human robot collaboration. In IEEE/RSJ international conference on intelligent robots and systems, IROS, Madrid, Spain, October 1–5, 2018 (pp. 8435–8442). Akkaladevi, S. C., Plasch, M., Eitzinger, C., Pichler, A., Rinner, B. (2018): Towards a context enhanced framework for multi object tracking in human robot collaboration. In IEEE/RSJ international conference on intelligent robots and systems, IROS, Madrid, Spain, October 1–5, 2018 (pp. 8435–8442).
9.
go back to reference Billard, A., et al. (2008): Robot programming by demonstration. Springer handbook of robotics (pp. 1371–1394). Berlin, Heidelberg: Springer. Billard, A., et al. (2008): Robot programming by demonstration. Springer handbook of robotics (pp. 1371–1394). Berlin, Heidelberg: Springer.
10.
go back to reference Ikeda, M., Maddukuri, S., Hofmann, M., Pichler, A., Zhang, X., Polydoros, A., Neugebauer, U. (2018): FlexRoP-flexible, assistive robots for customized production. In Austrian robotics workshop. (p. 53). Ikeda, M., Maddukuri, S., Hofmann, M., Pichler, A., Zhang, X., Polydoros, A., Neugebauer, U. (2018): FlexRoP-flexible, assistive robots for customized production. In Austrian robotics workshop. (p. 53).
11.
go back to reference Zhang, X., Polydoros, A. S., Piater, J. (2018): Learning movement assessment primitives for force interaction skills. Preprint arXiv:1805.04354. Zhang, X., Polydoros, A. S., Piater, J. (2018): Learning movement assessment primitives for force interaction skills. Preprint arXiv:​1805.​04354.
12.
go back to reference Niehorster, D. C., Li, L., Lappe, M. (2017): The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception, 8(3), 2041669517708205. Niehorster, D. C., Li, L., Lappe, M. (2017): The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception, 8(3), 2041669517708205.
14.
go back to reference Tsai, R. Y., Lenz, R. K. (1989): A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom., 5(3), 345–358. CrossRef Tsai, R. Y., Lenz, R. K. (1989): A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom., 5(3), 345–358. CrossRef
15.
go back to reference Park, F. C., Martin, B. J. (1994): Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Trans. Robot. Autom., 10(5), 717–721. CrossRef Park, F. C., Martin, B. J. (1994): Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Trans. Robot. Autom., 10(5), 717–721. CrossRef
16.
go back to reference Akkaladevi, S. C., Plasch, M., Pichler, A., Rinner, B. (2016): Human robot collaboration to reach a common goal in an assembly process. In STAIRS (pp. 3–14). Akkaladevi, S. C., Plasch, M., Pichler, A., Rinner, B. (2016): Human robot collaboration to reach a common goal in an assembly process. In STAIRS (pp. 3–14).
17.
go back to reference Ehrlinger, L., Wöß, W. (2016) Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48. Ehrlinger, L., Wöß, W. (2016) Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48.
18.
go back to reference Tenorth, M., Beetz, M. (2017): Representations for robot knowledge in the KnowRob framework. Artif. Intell., 247, 151–169. MathSciNetCrossRef Tenorth, M., Beetz, M. (2017): Representations for robot knowledge in the KnowRob framework. Artif. Intell., 247, 151–169. MathSciNetCrossRef
19.
go back to reference Goertzel, B. (2006): Patterns, hypergraphs and embodied general intelligence. In The 2006 IEEE international joint conference on neural network proceedings (pp. 451–458). New York: IEEE. Goertzel, B. (2006): Patterns, hypergraphs and embodied general intelligence. In The 2006 IEEE international joint conference on neural network proceedings (pp. 451–458). New York: IEEE.
20.
go back to reference Hart, D., Goertzel, B. (2008): Opencog: a software framework for integrative artificial general intelligence. In AGI (pp. 468–472). Hart, D., Goertzel, B. (2008): Opencog: a software framework for integrative artificial general intelligence. In AGI (pp. 468–472).
21.
go back to reference Munir, K., Anjum, M. S. (2018): The use of ontologies for effective knowledge modelling and information retrieval. Appl. Comput. Inf., 14(2), 116–126. Munir, K., Anjum, M. S. (2018): The use of ontologies for effective knowledge modelling and information retrieval. Appl. Comput. Inf., 14(2), 116–126.
Metadata
Title
Skill-based programming of complex robotic assembly tasks for industrial application
Authors
Sharath Chandra Akkaladevi
Andreas Pichler
Matthias Plasch
Markus Ikeda
Michael Hofmann
Publication date
31-10-2019
Publisher
Springer Vienna
Published in
e+i Elektrotechnik und Informationstechnik / Issue 7/2019
Print ISSN: 0932-383X
Electronic ISSN: 1613-7620
DOI
https://doi.org/10.1007/s00502-019-00741-4

Other articles of this Issue 7/2019

e & i Elektrotechnik und Informationstechnik 7/2019 Go to the issue