Skip to main content
Top

2025 | OriginalPaper | Chapter

Skin Cancer Detection Using Deep Learning

Authors : Pranati Rakshit, Arundhati Ghosh, Chirag Chakraborty, Joydeep Paul, Dinika Das

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Skin cancer is characterized by the uncontrolled proliferation of abnormal cells in the outermost skin layer, the epidermis, due to unrepaired DNA damage leading to mutations. These mutations cause rapid multiplication of skin cells, forming malignant tumors. The primary types of skin cancer include basal cell carcinoma (BCC), squamous cell carcinoma (SCC), melanoma, and Merkel cell carcinoma (MCC). Melanoma of the skin ranks as the 17th most common cancer worldwide, with more than 150,000 new cases reported in 2020. Early detection and treatment of melanoma can significantly impact patient outcomes. The present work aims to detect melanoma skin cancer in its early stages using image processing through Computer Vision and deep learning methodologies. The culmination of this effort is an Android application designed to facilitate self-diagnosis for users, offering timely alerts on when to consult a medical professional. Hospitals can also utilize the application to prioritize patient care based on their risk percentages, benefiting both patients and healthcare providers. The study delves into relevant research papers published in esteemed journals related to skin cancer diagnosis. Deep learning methods are proposed to assist dermatologists in achieving early and accurate diagnoses. While specialists can provide accurate diagnoses, the development of automated systems becomes crucial to efficiently diagnose diseases, saving lives and reducing healthcare and financial burdens. Machine learning (ML) emerges as a valuable tool in this context. The article focuses on the fundamentals of ML and its potential in aiding skin cancer diagnosis. The objective is to conduct a comparative study between the DenseNet-121, ResNet-50, and CNN-RF models. The study reveals that DenseNet-121 outperformed with a testing accuracy of 83%, surpassing ResNet- 50, which achieved 81% testing accuracy. This comparative analysis contributes to the ongoing research and development in the field of skin cancer diagnosis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Riker AI, Zea N, Trinh T (2010) The epidemiology, prevention, and detection of melanoma. Ochsner J 10(2):56–65 Riker AI, Zea N, Trinh T (2010) The epidemiology, prevention, and detection of melanoma. Ochsner J 10(2):56–65
2.
go back to reference Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRef Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRef
3.
go back to reference Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S (2022) Skin cancer classification with deep learning: a systematic review. Front Oncol 12:893972CrossRef Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S (2022) Skin cancer classification with deep learning: a systematic review. Front Oncol 12:893972CrossRef
4.
go back to reference Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR, Alsaiari SA, Saeed AHM, Alraddadi MO, Mahnashi MH (2021) Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health 18(10):5479CrossRef Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR, Alsaiari SA, Saeed AHM, Alraddadi MO, Mahnashi MH (2021) Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health 18(10):5479CrossRef
5.
go back to reference Ali MS, Miah MS, Haque J, Rahman MM, Islam MK (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach Learn Appl 5:100036 Ali MS, Miah MS, Haque J, Rahman MM, Islam MK (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach Learn Appl 5:100036
6.
go back to reference Arshed MA, Mumtaz S, Ibrahim M, Ahmed S, Tahir M, Shafi M (2023) Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7):415CrossRef Arshed MA, Mumtaz S, Ibrahim M, Ahmed S, Tahir M, Shafi M (2023) Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7):415CrossRef
7.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778
8.
go back to reference Ali K, Shaikh ZA, Khan AA, Laghari AA (2022) Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci Inf 2(4):100034 Ali K, Shaikh ZA, Khan AA, Laghari AA (2022) Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci Inf 2(4):100034
9.
go back to reference Banasode P, Patil M, Ammanagi N (2020) A melanoma skin cancer detection using machine learning technique: support vector machine. In: IOP conference series: materials science and engineering, vol 1065 Banasode P, Patil M, Ammanagi N (2020) A melanoma skin cancer detection using machine learning technique: support vector machine. In: IOP conference series: materials science and engineering, vol 1065
10.
go back to reference Huang G, Liu Z, van der Maaten L, Weinberger K (2016) Densely connected convolutional networks Huang G, Liu Z, van der Maaten L, Weinberger K (2016) Densely connected convolutional networks
11.
go back to reference Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef
12.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak AWMJ, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak AWMJ, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
13.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning
14.
go back to reference Ertam, Aydın G (2017) Data classification with deep learning using tensorflow. In: International conference on computer science and engineering (UBMK) Antalya, Turkey, pp 755–758 Ertam, Aydın G (2017) Data classification with deep learning using tensorflow. In: International conference on computer science and engineering (UBMK) Antalya, Turkey, pp 755–758
15.
go back to reference Ketkar N (2017) Introduction to Keras. In book: deep learning with python, pp95–109 Ketkar N (2017) Introduction to Keras. In book: deep learning with python, pp95–109
16.
go back to reference Joseph FJJ, Nonsiri S, Monsakul A (2021) Keras and tensorflow: a hands-on experience. In book: advanced deep learning for engineers and scientists, pp85–111 Joseph FJJ, Nonsiri S, Monsakul A (2021) Keras and tensorflow: a hands-on experience. In book: advanced deep learning for engineers and scientists, pp85–111
17.
go back to reference Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):160CrossRef Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):160CrossRef
18.
go back to reference Çelik Ö (2018) A research on machine learning methods and its applications. J Educ Technol Online Learn 1(3):25–40CrossRef Çelik Ö (2018) A research on machine learning methods and its applications. J Educ Technol Online Learn 1(3):25–40CrossRef
19.
go back to reference Ramprasath M, Anand MV, Hariharan S (2018) Image classification using convolutional neural networks. Int J Pure Appl Math 119(17):1307–1319 Ramprasath M, Anand MV, Hariharan S (2018) Image classification using convolutional neural networks. Int J Pure Appl Math 119(17):1307–1319
20.
go back to reference Sharma A, Phonsa G (2021) Image classification using CNN. In: Proceedings of the international conference on innovative computing & communication (ICICC) Sharma A, Phonsa G (2021) Image classification using CNN. In: Proceedings of the international conference on innovative computing & communication (ICICC)
Metadata
Title
Skin Cancer Detection Using Deep Learning
Authors
Pranati Rakshit
Arundhati Ghosh
Chirag Chakraborty
Joydeep Paul
Dinika Das
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_29