Skip to main content
Top
Published in:

10-08-2022 | Original Research

SM-BERT-CR: a deep learning approach for case law retrieval with supporting model

Authors: Yen Thi-Hai Vuong, Quan Minh Bui, Ha-Thanh Nguyen, Thi-Thu-Trang Nguyen, Vu Tran, Xuan-Hieu Phan, Ken Satoh, Le-Minh Nguyen

Published in: Artificial Intelligence and Law | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Case law retrieval is the task of locating truly relevant legal cases given an input query case. Unlike information retrieval for general texts, this task is more complex with two phases (legal case retrieval and legal case entailment) and much harder due to a number of reasons. First, both the query and candidate cases are long documents consisting of several paragraphs. This makes it difficult to model with representation learning that usually has restriction on input length. Second, the concept of relevancy in this domain is defined based on the legal relation that goes beyond the lexical or topical relevance. This is a real challenge because normal text matching will not work. Third, building a large and accurate legal case dataset requires a lot of effort and expertise. This is obviously an obstacle to creating enough data for training deep retrieval models. In this paper, we propose a novel approach called supporting model that can deal with both phases. The underlying idea is the case–case supporting relation and the paragraph–paragraph as well as the decision-paragraph matching strategy. In addition, we propose a method to automatically create a large weak-labeling dataset to overcome the lack of data. The experiments showed that our solution has achieved the state-of-the-art results for both case retrieval and case entailment phases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arora S, Liang Y, Ma T (2017) A simple but tough-to-beat baseline for sentence embeddings. In: 5th international conference on learning representations, ICLR 2017 Arora S, Liang Y, Ma T (2017) A simple but tough-to-beat baseline for sentence embeddings. In: 5th international conference on learning representations, ICLR 2017
go back to reference Bench-Capon T, Araszkiewicz M, Ashley K, Atkinson K, Bex F, Borges F, Bourcier D, Bourgine P, Conrad JG, Francesconi E et al (2012) A history of AI and law in 50 papers: 25 years of the International Conference on AI and Law. Artif Intell Law 20(3):215–319CrossRef Bench-Capon T, Araszkiewicz M, Ashley K, Atkinson K, Bex F, Borges F, Bourcier D, Bourgine P, Conrad JG, Francesconi E et al (2012) A history of AI and law in 50 papers: 25 years of the International Conference on AI and Law. Artif Intell Law 20(3):215–319CrossRef
go back to reference Berger A, Lafferty J (2017) Information retrieval as statistical translation, vol 51. ACM SIGIR Forum, ACM New York, pp 219–226 Berger A, Lafferty J (2017) Information retrieval as statistical translation, vol 51. ACM SIGIR Forum, ACM New York, pp 219–226
go back to reference Bhattacharya P, Ghosh K, Ghosh S, Pal A, Mehta P, Bhattacharya A, Majumder P (2019) Overview of the fire 2019 aila track: artificial intelligence for legal assistance. In: FIRE (Working Notes), pp 1–12 Bhattacharya P, Ghosh K, Ghosh S, Pal A, Mehta P, Bhattacharya A, Majumder P (2019) Overview of the fire 2019 aila track: artificial intelligence for legal assistance. In: FIRE (Working Notes), pp 1–12
go back to reference Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: Proceedings of the 22nd international conference on machine learning, pp 89–96 Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. In: Proceedings of the 22nd international conference on machine learning, pp 89–96
go back to reference Burges CJ, Ragno R, Le QV (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, pp 193–200 Burges CJ, Ragno R, Le QV (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, pp 193–200
go back to reference Castells P, Fernandez M, Vallet D (2006) An adaptation of the vector-space model for ontology-based information retrieval. IEEE Trans Knowl Data Eng 19(2):261–272CrossRef Castells P, Fernandez M, Vallet D (2006) An adaptation of the vector-space model for ontology-based information retrieval. IEEE Trans Knowl Data Eng 19(2):261–272CrossRef
go back to reference Dai Z, Callan J (2019) Deeper text understanding for IR with contextual neural language modeling. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, pp 985–988 Dai Z, Callan J (2019) Deeper text understanding for IR with contextual neural language modeling. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, pp 985–988
go back to reference Devlin J, Chang MW, Lee K, Toutanova K (2019a) BERT: Pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp 4171–4186 Devlin J, Chang MW, Lee K, Toutanova K (2019a) BERT: Pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp 4171–4186
go back to reference Devlin J, Chang MW, Lee K, Toutanova K (2019b) Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT Devlin J, Chang MW, Lee K, Toutanova K (2019b) Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT
go back to reference Gao J, Pantel P, Gamon M, He X, Deng L (2014) Modeling interestingness with deep neural networks. In: EMNLP Gao J, Pantel P, Gamon M, He X, Deng L (2014) Modeling interestingness with deep neural networks. In: EMNLP
go back to reference Guo J, Fan Y, Pang L, Yang L, Ai Q, Zamani H, Wu C, Croft WB, Cheng X (2020) A deep look into neural ranking models for information retrieval. Inf Process Manag 57(6):102067CrossRef Guo J, Fan Y, Pang L, Yang L, Ai Q, Zamani H, Wu C, Croft WB, Cheng X (2020) A deep look into neural ranking models for information retrieval. Inf Process Manag 57(6):102067CrossRef
go back to reference Hu B, Lu Z, Li H, Chen Q (2014) Convolutional neural network architectures for matching natural language sentences. In: Advances in neural information processing systems, pp 2042–2050 Hu B, Lu Z, Li H, Chen Q (2014) Convolutional neural network architectures for matching natural language sentences. In: Advances in neural information processing systems, pp 2042–2050
go back to reference Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp 2333–2338 Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp 2333–2338
go back to reference Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: International conference on learning representations Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: International conference on learning representations
go back to reference Liu TY (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3:225–331CrossRef Liu TY (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3:225–331CrossRef
go back to reference Mandal A, Chaki R, Saha S, Ghosh K, Pal A, Ghosh S (2017) Measuring similarity among legal court case documents. In: Proceedings of the 10th annual ACM India compute conference, pp 1–9 Mandal A, Chaki R, Saha S, Ghosh K, Pal A, Ghosh S (2017) Measuring similarity among legal court case documents. In: Proceedings of the 10th annual ACM India compute conference, pp 1–9
go back to reference Marchesin S, Purpura A, Silvello G (2020) Focal elements of neural information retrieval models. An outlook through a reproducibility study. Inf Process Manag 57(6):102109CrossRef Marchesin S, Purpura A, Silvello G (2020) Focal elements of neural information retrieval models. An outlook through a reproducibility study. Inf Process Manag 57(6):102109CrossRef
go back to reference Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 404–411 Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 404–411
go back to reference Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on world wide web, pp 1291–1299 Mitra B, Diaz F, Craswell N (2017) Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th international conference on world wide web, pp 1291–1299
go back to reference Oard DW, Webber W (2013) Information retrieval for e-discovery. Inf Retr 7(2–3):99–237 Oard DW, Webber W (2013) Information retrieval for e-discovery. Inf Retr 7(2–3):99–237
go back to reference Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward R (2016) Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans Audio Speech Lang Process 24(4):694–707CrossRef Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward R (2016) Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans Audio Speech Lang Process 24(4):694–707CrossRef
go back to reference Pang L, Lan Y, Guo J, Xu J, Wan S, Cheng X (2016) Text matching as image recognition. AAAI Press, AAAI’16 Pang L, Lan Y, Guo J, Xu J, Wan S, Cheng X (2016) Text matching as image recognition. AAAI Press, AAAI’16
go back to reference Rabelo J, Kim MY, Goebel R (2019a) Combining similarity and transformer methods for case law entailment. In: Proceedings of the seventeenth international conference on artificial intelligence and law, pp 290–296 Rabelo J, Kim MY, Goebel R (2019a) Combining similarity and transformer methods for case law entailment. In: Proceedings of the seventeenth international conference on artificial intelligence and law, pp 290–296
go back to reference Rabelo J, Kim MY, Goebel R (2019b) Combining similarity and transformer methods for case law entailment. In: Proceedings of the seventeenth international conference on artificial intelligence and law, association for computing machinery, New York, NY, USA, ICAIL ’19, pp 290–296 Rabelo J, Kim MY, Goebel R (2019b) Combining similarity and transformer methods for case law entailment. In: Proceedings of the seventeenth international conference on artificial intelligence and law, association for computing machinery, New York, NY, USA, ICAIL ’19, pp 290–296
go back to reference Robertson SE, Walker S (1994) Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In: SIGIR’94. Springer, pp 232–241 Robertson SE, Walker S (1994) Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In: SIGIR’94. Springer, pp 232–241
go back to reference Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx Reason 50(7):969–978CrossRef Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx Reason 50(7):969–978CrossRef
go back to reference Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef
go back to reference Saracevic T (1996) Relevance reconsidered. In: Proceedings of the second conference on conceptions of library and information science (CoLIS 2), ACM New York, pp 201–218 Saracevic T (1996) Relevance reconsidered. In: Proceedings of the second conference on conceptions of library and information science (CoLIS 2), ACM New York, pp 201–218
go back to reference Saravanan M, Ravindran B, Raman S (2009) Improving legal information retrieval using an ontological framework. Artif Intell Law 17(2):101–124CrossRef Saravanan M, Ravindran B, Raman S (2009) Improving legal information retrieval using an ontological framework. Artif Intell Law 17(2):101–124CrossRef
go back to reference Shao Y, Mao J, Liu Y, Ma W, Satoh K, Zhang M, Ma S (2020) Bert-pli: modeling paragraph-level interactions for legal case retrieval. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20, international joint conferences on artificial intelligence organization, pp 3501–3507 Shao Y, Mao J, Liu Y, Ma W, Satoh K, Zhang M, Ma S (2020) Bert-pli: modeling paragraph-level interactions for legal case retrieval. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20, international joint conferences on artificial intelligence organization, pp 3501–3507
go back to reference Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, pp 101–110 Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, pp 101–110
go back to reference Song F, Croft WB (1999) A general language model for information retrieval. In: Proceedings of the eighth international conference on Information and knowledge management, pp 316–321 Song F, Croft WB (1999) A general language model for information retrieval. In: Proceedings of the eighth international conference on Information and knowledge management, pp 316–321
go back to reference Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China, pp 1556–1566 Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China, pp 1556–1566
go back to reference Tran V, Le Nguyen M, Tojo S, Satoh K (2020) Encoded summarization: summarizing documents into continuous vector space for legal case retrieval. Artif Intell Law 1–27 Tran V, Le Nguyen M, Tojo S, Satoh K (2020) Encoded summarization: summarizing documents into continuous vector space for legal case retrieval. Artif Intell Law 1–27
go back to reference Van Opijnen M, Santos C (2017) On the concept of relevance in legal information retrieval. Artif Intell Law 25(1):65–87CrossRef Van Opijnen M, Santos C (2017) On the concept of relevance in legal information retrieval. Artif Intell Law 25(1):65–87CrossRef
go back to reference Wan S, Lan Y, Guo J, Xu J, Pang L, Cheng X (2016) A deep architecture for semantic matching with multiple positional sentence representations. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI Press, AAAI’16, pp 2835–2841 Wan S, Lan Y, Guo J, Xu J, Pang L, Cheng X (2016) A deep architecture for semantic matching with multiple positional sentence representations. In: Proceedings of the thirtieth AAAI conference on artificial intelligence. AAAI Press, AAAI’16, pp 2835–2841
go back to reference Wu Q, Burges CJ, Svore KM, Gao J (2010) Adapting boosting for information retrieval measures. Inf Retr 13(3):254–270CrossRef Wu Q, Burges CJ, Svore KM, Gao J (2010) Adapting boosting for information retrieval measures. Inf Retr 13(3):254–270CrossRef
go back to reference Yilmaz ZA, Yang W, Zhang H, Lin J (2019) Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 3481–3487 Yilmaz ZA, Yang W, Zhang H, Lin J (2019) Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 3481–3487
go back to reference Zeng Y, Wang R, Zeleznikow J, Kemp E (2005) Knowledge representation for the intelligent legal case retrieval. In: International conference on knowledge-based and intelligent information and engineering systems. Springer, pp 339–345 Zeng Y, Wang R, Zeleznikow J, Kemp E (2005) Knowledge representation for the intelligent legal case retrieval. In: International conference on knowledge-based and intelligent information and engineering systems. Springer, pp 339–345
go back to reference Zhai C, Lafferty J (2017) A study of smoothing methods for language models applied to ad hoc information retrieval, vol 51. ACM SIGIR Forum, ACM New York, NY, USA, pp 268–276 Zhai C, Lafferty J (2017) A study of smoothing methods for language models applied to ad hoc information retrieval, vol 51. ACM SIGIR Forum, ACM New York, NY, USA, pp 268–276
Metadata
Title
SM-BERT-CR: a deep learning approach for case law retrieval with supporting model
Authors
Yen Thi-Hai Vuong
Quan Minh Bui
Ha-Thanh Nguyen
Thi-Thu-Trang Nguyen
Vu Tran
Xuan-Hieu Phan
Ken Satoh
Le-Minh Nguyen
Publication date
10-08-2022
Publisher
Springer Netherlands
Published in
Artificial Intelligence and Law / Issue 3/2023
Print ISSN: 0924-8463
Electronic ISSN: 1572-8382
DOI
https://doi.org/10.1007/s10506-022-09319-6

Premium Partner