Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-10-2019 | Focus | Issue 8/2020

Soft Computing 8/2020

Small-scale moving target detection in aerial image by deep inverse reinforcement learning

Journal:
Soft Computing > Issue 8/2020
Authors:
Wei Sun, Dashuai Yan, Jie Huang, Changhao Sun
Important notes
Communicated by B. B. Gupta.
This work was funded by National Nature Science Foundation of China (NSFC) under Grants 61671356, 61703403.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

It proposes a deep inverse reinforcement learning method for slow and weak moving targets detection in aerial video. Differential gray images of adjacent frames are used as the network model input, and the feature network layer extracts the candidate moving target regions through the multi-layer convolution. The candidate target information is used as the initial layer of the policy network. The expert trajectory is used to adjust and optimize the feature convolution network model and the policy fully connected network model to realize the training the reward return function and the expert policy. In the stage of autonomous improvement policy, the policy model is re-optimized by unmarked aerial video, and deep inverse reinforcement learning and nonlinear policy network are used to make decision on moving target position and size information. The target size of the multi-group aerial video test set is 10 * 10 pixels. Experimental results show that the proposed algorithm has the advantage of the nonlinear policy of the neural network compared with the traditional moving target detection algorithm, and the detection result is more accurate. At the same time, compared with the traditional marginal programming (MMP) method and the structured classification based (SCIRL) method, the proposed algorithm shows obvious advantages in the accuracy of aerial video moving target detection.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Soft Computing 8/2020 Go to the issue

Premium Partner

    Image Credits