Skip to main content
Top

2016 | OriginalPaper | Chapter

Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing

Authors : Anastasios Maronidis, Elisavet Chatzilari, Spiros Nikolopoulos, Ioannis Kompatsiaris

Published in: Big Data Optimization: Recent Developments and Challenges

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Handling big data poses as a huge challenge in the computer science community. Some of the most appealing research domains such as machine learning, computational biology and social networks are now overwhelmed with large-scale databases that need computationally demanding manipulation. Several techniques have been proposed for dealing with big data processing challenges including computational efficient implementations, like parallel and distributed architectures, but most approaches benefit from a dimensionality reduction and smart sampling step of the data. In this context, through a series of groundbreaking works, Compressed Sensing (CS) has emerged as a powerful mathematical framework providing a suite of conditions and methods that allow for an almost lossless and efficient data compression. The most surprising outcome of CS is the proof that random projections qualify as a close to optimal selection for transforming high-dimensional data into a low-dimensional space in a way that allows for their almost perfect reconstruction. The compression power along with the usage simplicity render CS an appealing method for optimal dimensionality reduction of big data. Although CS is renowned for its capability of providing succinct representations of the data, in this chapter we investigate its potential as a dimensionality reduction technique in the domain of image annotation. More specifically, our aim is to initially present the challenges stemming from the nature of big data problems, explain the basic principles, advantages and disadvantages of CS and identify potential ways of exploiting this theory in the domain of large-scale image annotation. Towards this end, a novel Hierarchical Compressed Sensing (HCS) method is proposed. The new method dramatically decreases the computational complexity, while displays robustness equal to the typical CS method. Besides, the connection between the sparsity level of the original dataset and the effectiveness of HCS is established through a series of artificial experiments. Finally, the proposed method is compared with the state-of-the-art dimensionality reduction technique of Principal Component Analysis. The performance results are encouraging, indicating a promising potential of the new method in large-scale image annotation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aharon, M., Elad, M., Bruckstein, A.: SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef Aharon, M., Elad, M., Bruckstein, A.: SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef
2.
go back to reference Bacardit, J., Llorà, X.: Large-scale data mining using genetics-based machine learning. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 3(1), 37–61 (2013) Bacardit, J., Llorà, X.: Large-scale data mining using genetics-based machine learning. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 3(1), 37–61 (2013)
3.
go back to reference Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4) (2007) Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4) (2007)
4.
go back to reference Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)MathSciNetCrossRef Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)MathSciNetCrossRef
5.
go back to reference Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRef Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRef
6.
go back to reference Brandt, J.: Transform coding for fast approximate nearest neighbor search in high dimensions. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1815–1822. IEEE (2010) Brandt, J.: Transform coding for fast approximate nearest neighbor search in high dimensions. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1815–1822. IEEE (2010)
7.
go back to reference Bryt, O., Elad, M.: Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19(4), 270–282 (2008)CrossRef Bryt, O., Elad, M.: Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19(4), 270–282 (2008)CrossRef
8.
go back to reference Cai, H., Mikolajczyk, K., Matas, J.: Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 338–352 (2011)CrossRef Cai, H., Mikolajczyk, K., Matas, J.: Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 338–352 (2011)CrossRef
9.
go back to reference Candes, E.J., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006)MathSciNetCrossRefMATH Candes, E.J., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006)MathSciNetCrossRefMATH
10.
go back to reference Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefMATH
12.
go back to reference Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRef Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRef
13.
go back to reference Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452. Madrid, Spain (2006) Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452. Madrid, Spain (2006)
14.
go back to reference Cevher, V., Sankaranarayanan, A., Duarte, M.F., Reddy, D., Baraniuk, R.G., Chellappa, R.: Compressive sensing for background subtraction. In: Computer Vision-ECCV 2008, pp. 155–168. Springer (2008) Cevher, V., Sankaranarayanan, A., Duarte, M.F., Reddy, D., Baraniuk, R.G., Chellappa, R.: Compressive sensing for background subtraction. In: Computer Vision-ECCV 2008, pp. 155–168. Springer (2008)
15.
go back to reference Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The Devil is in the Details: An Evaluation of Recent Feature Encoding Methods (2011) Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The Devil is in the Details: An Evaluation of Recent Feature Encoding Methods (2011)
16.
go back to reference Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Learning ensembles from bites: a scalable and accurate approach. J. Mach. Learn. Res. 5, 421–451 (2004)MathSciNet Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Learning ensembles from bites: a scalable and accurate approach. J. Mach. Learn. Res. 5, 421–451 (2004)MathSciNet
17.
go back to reference Chen, S., Donoho, D.: Basis pursuit. In: 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, 1994, vol. 1, pp. 41–44. IEEE (1994) Chen, S., Donoho, D.: Basis pursuit. In: 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, 1994, vol. 1, pp. 41–44. IEEE (1994)
18.
go back to reference Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1998) Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1998)
19.
go back to reference Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to Compressed Sensing. Preprint 93 (2011) Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to Compressed Sensing. Preprint 93 (2011)
20.
go back to reference Davenport, M.A., Laska, J.N., Boufounos, P.T., Baraniuk, R.G.: A simple proof that random matrices are democratic. arXiv:0911.0736 (2009) Davenport, M.A., Laska, J.N., Boufounos, P.T., Baraniuk, R.G.: A simple proof that random matrices are democratic. arXiv:​0911.​0736 (2009)
21.
go back to reference Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRef Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRef
23.
go back to reference Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)MathSciNetCrossRef Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)MathSciNetCrossRef
24.
go back to reference Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer (2010) Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer (2010)
25.
go back to reference Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRef
26.
go back to reference Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal Visual Object Classes Challenge 2012 (2012) Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal Visual Object Classes Challenge 2012 (2012)
27.
go back to reference Huang, J., Liu, H., Shen, J., Yan, S.: Towards efficient sparse coding for scalable image annotation. In: Proceedings of the 21st ACM international conference on Multimedia, pp. 947–956. ACM (2013) Huang, J., Liu, H., Shen, J., Yan, S.: Towards efficient sparse coding for scalable image annotation. In: Proceedings of the 21st ACM international conference on Multimedia, pp. 947–956. ACM (2013)
28.
go back to reference Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS, pp. 609–616 (2006) Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS, pp. 609–616 (2006)
29.
go back to reference Jégou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2357–2364. IEEE (2009) Jégou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2357–2364. IEEE (2009)
30.
go back to reference Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Machine Intell. 33(1), 117–128 (2011)CrossRef Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Machine Intell. 33(1), 117–128 (2011)CrossRef
31.
go back to reference Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010) Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)
32.
go back to reference Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005) Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005)
33.
go back to reference Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999) Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)
34.
go back to reference Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)MathSciNetCrossRefMATH Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)MathSciNetCrossRefMATH
35.
go back to reference Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Technical report, DTIC Document (2007) Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Technical report, DTIC Document (2007)
36.
go back to reference Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11(6), 703–715 (2001)CrossRef Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11(6), 703–715 (2001)CrossRef
37.
go back to reference Mohri, M., Talwalkar, A.: Can matrix coherence be efficiently and accurately estimated? In: International Conference on Artificial Intelligence and Statistics, pp. 534–542 (2011) Mohri, M., Talwalkar, A.: Can matrix coherence be efficiently and accurately estimated? In: International Conference on Artificial Intelligence and Statistics, pp. 534–542 (2011)
38.
go back to reference Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)CrossRef Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)CrossRef
39.
go back to reference Patel, V.M., Chellappa, R.: Sparse representations, compressive sensing and dictionaries for pattern recognition. In: 2011 First Asian Conference on Pattern Recognition (ACPR), pp. 325–329. IEEE (2011) Patel, V.M., Chellappa, R.: Sparse representations, compressive sensing and dictionaries for pattern recognition. In: 2011 First Asian Conference on Pattern Recognition (ACPR), pp. 325–329. IEEE (2011)
40.
go back to reference Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Computer Vision-ECCV 2010, pp. 143–156. Springer (2010) Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Computer Vision-ECCV 2010, pp. 143–156. Springer (2010)
41.
go back to reference Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: Advances in Neural Information Processing Systems, pp. 1509–1517 (2009) Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: Advances in Neural Information Processing Systems, pp. 1509–1517 (2009)
42.
go back to reference Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1672. IEEE (2011) Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1672. IEEE (2011)
44.
go back to reference Shi, Q., Petterson, J., Dror, G., Langford, J., Strehl, A.L., Smola, A.J., Vishwanathan, S.: Hash kernels. In: International Conference on Artificial Intelligence and Statistics, pp. 496–503 (2009) Shi, Q., Petterson, J., Dror, G., Langford, J., Strehl, A.L., Smola, A.J., Vishwanathan, S.: Hash kernels. In: International Conference on Artificial Intelligence and Statistics, pp. 496–503 (2009)
46.
go back to reference Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008) Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)
47.
go back to reference Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATH
48.
go back to reference Vapnik, V.: The Nature of Statistical Learning Theory. Springer (2000) Vapnik, V.: The Nature of Statistical Learning Theory. Springer (2000)
49.
go back to reference Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010) Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010)
50.
go back to reference Wang, C., Yan, S., Zhang, L., Zhang, H.J.: Multi-label sparse coding for automatic image annotation. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1643–1650. IEEE (2009) Wang, C., Yan, S., Zhang, L., Zhang, H.J.: Multi-label sparse coding for automatic image annotation. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1643–1650. IEEE (2009)
51.
go back to reference Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1113–1120. ACM (2009) Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1113–1120. ACM (2009)
52.
go back to reference Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009) Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)
53.
go back to reference Willett, R.M., Marcia, R.F., Nichols, J.M.: Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng. 50(7), 072,601–072,601 (2011) Willett, R.M., Marcia, R.F., Nichols, J.M.: Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng. 50(7), 072,601–072,601 (2011)
54.
go back to reference Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRef
55.
go back to reference Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRef Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRef
56.
go back to reference Yang, J., Bouzerdoum, A., Tivive, F.H.C., Phung, S.L.: Dimensionality reduction using compressed sensing and its application to a large-scale visual recognition task. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010) Yang, J., Bouzerdoum, A., Tivive, F.H.C., Phung, S.L.: Dimensionality reduction using compressed sensing and its application to a large-scale visual recognition task. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)
57.
go back to reference Yu, S., Tranchevent, L.C., Liu, X., Glanzel, W., Suykens, J.A., De Moor, B., Moreau, Y.: Optimized data fusion for kernel k-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1031–1039 (2012)CrossRef Yu, S., Tranchevent, L.C., Liu, X., Glanzel, W., Suykens, J.A., De Moor, B., Moreau, Y.: Optimized data fusion for kernel k-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1031–1039 (2012)CrossRef
58.
go back to reference Zhang, Q., Li, B.: Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698. IEEE (2010) Zhang, Q., Li, B.: Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698. IEEE (2010)
59.
go back to reference Zhang, Z., Wang, J., Zha, H.: Adaptive manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 253–265 (2012)CrossRef Zhang, Z., Wang, J., Zha, H.: Adaptive manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 253–265 (2012)CrossRef
60.
go back to reference Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)MathSciNetCrossRef Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)MathSciNetCrossRef
Metadata
Title
Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing
Authors
Anastasios Maronidis
Elisavet Chatzilari
Spiros Nikolopoulos
Ioannis Kompatsiaris
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-30265-2_12

Premium Partner