Skip to main content
Top

2015 | OriginalPaper | Chapter

10. Smoothed Particle Hydrodynamics Applied to Cartilage Deformation

Authors : Philip Boyer, Sean LeBlanc, Chris Joslin

Published in: GPU Computing and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modelling of the cartilage within the acetabulum is necessary for determination of stresses in preoperative simulation of femoral acetabular impingement (FAI), a condition that is considered a primary cause of osteoarthritis. Presented is a previously proven method for elastic solid deformation using smoothed particle hydrodynamics (SPH). Smoothed particle hydrodynamics is a mesh-free method that has advantages in computational speed and accuracy over other graphical methods and as such is attractive for medical simulations that require high degrees of precision and real-time operability. A complete formulation of the method of polar decomposition as devised for smoothed particle hydrodynamics is outlined with the inclusion of a corotational formulation for accurate rotation handling. Modifications to the existing method include boundary and collision handling using an adapted virtual particle method, as well as an algorithm for parallel implementation on the GPU using NVIDIA’s CUDA framework. The method is verified through testing with a range of material parameters within the provided elastic solid framework. Employing CUDA for calculations is found to dramatically increase the computational speed of the simulation. The results of an indenter analysis of cartilage modelled as a purely elastic solid are presented and evaluated, with the conclusion that with further refinement the presented method is promising for use in cartilage simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Martin, D.E., Tashman, S.: The biomechanics of femoroacetabular impingement. Oper. Tech. Orthop. 20, 248–254 (2010)CrossRef Martin, D.E., Tashman, S.: The biomechanics of femoroacetabular impingement. Oper. Tech. Orthop. 20, 248–254 (2010)CrossRef
2.
go back to reference Tannast, M., Goricki, D., Beck, M., Murphy, S.B., Siebenrock, K.A.: Hip damage occurs at the zone of femoroacetabular impingement. Clin. Orthop. Relat. Res. 466, 273–280 (2008)CrossRef Tannast, M., Goricki, D., Beck, M., Murphy, S.B., Siebenrock, K.A.: Hip damage occurs at the zone of femoroacetabular impingement. Clin. Orthop. Relat. Res. 466, 273–280 (2008)CrossRef
3.
go back to reference Krekel, P.R., Vochteloo, A.J.H., Bloem, R.M., Nelissen, R.G.: Femoroacetabular impingement and its implications on range of motion: a case report. J. Med. Case Rep. 5, 143 (2011)CrossRef Krekel, P.R., Vochteloo, A.J.H., Bloem, R.M., Nelissen, R.G.: Femoroacetabular impingement and its implications on range of motion: a case report. J. Med. Case Rep. 5, 143 (2011)CrossRef
4.
go back to reference Asheesh, B., et al.: Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am. J. Sports Med. 39, 43S–49S (2011)CrossRef Asheesh, B., et al.: Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am. J. Sports Med. 39, 43S–49S (2011)CrossRef
5.
go back to reference Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Com Graph 21, 205–214 (1987)CrossRef Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Com Graph 21, 205–214 (1987)CrossRef
6.
go back to reference Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of 12th IMR 103-114 (2003) Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of 12th IMR 103-114 (2003)
7.
go back to reference Maciel, A., Boulic, R., Thalmann, D.: Deformable tissue parameterized by properties of real biological tissue. Surg. Sim. Soft Tissue Model 2673, 74–87 (2003)CrossRef Maciel, A., Boulic, R., Thalmann, D.: Deformable tissue parameterized by properties of real biological tissue. Surg. Sim. Soft Tissue Model 2673, 74–87 (2003)CrossRef
8.
go back to reference Lloyd, B.A., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comp. Graph. 13, 1081–1094 (2007)CrossRef Lloyd, B.A., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comp. Graph. 13, 1081–1094 (2007)CrossRef
9.
go back to reference James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. SIGGRAPH 1999, 65–72 (1999) James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. SIGGRAPH 1999, 65–72 (1999)
10.
go back to reference MeieMollemans, W., Schutyser, F., Najmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med. Image Anal. 11, 282–301 (2007)CrossRef MeieMollemans, W., Schutyser, F., Najmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med. Image Anal. 11, 282–301 (2007)CrossRef
11.
go back to reference Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings on Computer Animation, pp, 70–81 (2000) Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings on Computer Animation, pp, 70–81 (2000)
12.
go back to reference Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105, 1–12 (2012)CrossRef Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105, 1–12 (2012)CrossRef
13.
go back to reference Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)CrossRef Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)CrossRef
14.
go back to reference Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph 5, 62–73 (1999)CrossRef Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph 5, 62–73 (1999)CrossRef
15.
go back to reference Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77, 183–197 (2005)CrossRef Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77, 183–197 (2005)CrossRef
17.
go back to reference Hieber, S.E., Koumoutsakos, P.: A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. J. Comput. Phys. 227, 9195–9215 (2008)CrossRefMATHMathSciNet Hieber, S.E., Koumoutsakos, P.: A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. J. Comput. Phys. 227, 9195–9215 (2008)CrossRefMATHMathSciNet
18.
go back to reference Müller, M., Chentanez, N.: Solid simulation with oriented particles. ACM Trans. Graph. 30(92), 1–9 (2011)CrossRef Müller, M., Chentanez, N.: Solid simulation with oriented particles. ACM Trans. Graph. 30(92), 1–9 (2011)CrossRef
19.
go back to reference Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)CrossRefMATH Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)CrossRefMATH
20.
go back to reference Müller, M., Charypar, D., Gross, M.: Particle-Based Fluid Simulation for Interactive Applications. In: Eurograph/SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003) Müller, M., Charypar, D., Gross, M.: Particle-Based Fluid Simulation for Interactive Applications. In: Eurograph/SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)
21.
go back to reference Bao, K., Zhang, H., Zheng, L., Wu, E.: Pressure corrected SPH for fluid animation. Comput. Animat. Virtual Worlds 20, 311–320 (2009)CrossRef Bao, K., Zhang, H., Zheng, L., Wu, E.: Pressure corrected SPH for fluid animation. Comput. Animat. Virtual Worlds 20, 311–320 (2009)CrossRef
22.
go back to reference Lenaerts, T., Adams, B., Dutré, P.: Porous Flow in Particle-Based Fluid Simulations. ACM Trans. Graph. 49, 1–8 (2008)CrossRef Lenaerts, T., Adams, B., Dutré, P.: Porous Flow in Particle-Based Fluid Simulations. ACM Trans. Graph. 49, 1–8 (2008)CrossRef
23.
go back to reference Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, pp. 287–296 (2008) Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, pp. 287–296 (2008)
24.
go back to reference Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comp. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)CrossRefMATH Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comp. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)CrossRefMATH
25.
go back to reference Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., Chui, C.K.: Particle-based Simulation of blood flow and vessel wall interactions in virtual surgery. In: SolCT, pp. 128–133 (2010) Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., Chui, C.K.: Particle-based Simulation of blood flow and vessel wall interactions in virtual surgery. In: SolCT, pp. 128–133 (2010)
26.
go back to reference Mesit, J., Guha, R.K.: Experimenting with real time simulation parameters for fluid model of soft bodies. In: Proceedings of SpringSim, pp. 1–8 (2010) Mesit, J., Guha, R.K.: Experimenting with real time simulation parameters for fluid model of soft bodies. In: Proceedings of SpringSim, pp. 1–8 (2010)
27.
go back to reference Hieber, S.E., Walther, J.H., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol. Health Care 12, 305–314 (2004) Hieber, S.E., Walther, J.H., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol. Health Care 12, 305–314 (2004)
28.
go back to reference Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 69–82 (2007)CrossRef Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 69–82 (2007)CrossRef
29.
go back to reference Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the 5th Eurographics Conference on Natural Phenomena, pp. 27–34 (2009) Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the 5th Eurographics Conference on Natural Phenomena, pp. 27–34 (2009)
30.
go back to reference Mow, V.C., Holmes, M.H., Lai, M.W.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRef Mow, V.C., Holmes, M.H., Lai, M.W.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRef
31.
go back to reference Korhonen, R.K., et al.: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379 (2003)CrossRef Korhonen, R.K., et al.: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379 (2003)CrossRef
32.
go back to reference Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6, 43–53 (2007)CrossRef Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6, 43–53 (2007)CrossRef
33.
go back to reference Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Vis. Comp. 24, 625–633 (2008)CrossRef Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Vis. Comp. 24, 625–633 (2008)CrossRef
34.
go back to reference Jin, H., Lewis, J.L.: Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J. Biomech. Eng. 126, 138–145 (2004)CrossRef Jin, H., Lewis, J.L.: Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J. Biomech. Eng. 126, 138–145 (2004)CrossRef
35.
go back to reference Müller, M. et al.: Point based animation of elastic, plastic and melting objects. In: Proceedings of SIGGRAPH Symposium on Computer Animation, pp. 141–151 (2004) Müller, M. et al.: Point based animation of elastic, plastic and melting objects. In: Proceedings of SIGGRAPH Symposium on Computer Animation, pp. 141–151 (2004)
36.
go back to reference Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)CrossRefMathSciNet Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)CrossRefMathSciNet
37.
go back to reference Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of EG Workshop on Animation and Simulation, pp. 61–76 (1996) Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of EG Workshop on Animation and Simulation, pp. 61–76 (1996)
38.
go back to reference Lu, X.L., Wan, L.Q., Guo, X.E., Mow, V.C.: A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J. Biomech. 43, 673–679 (2010)CrossRef Lu, X.L., Wan, L.Q., Guo, X.E., Mow, V.C.: A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J. Biomech. 43, 673–679 (2010)CrossRef
39.
go back to reference Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(104), 1–5 (2013)CrossRef Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(104), 1–5 (2013)CrossRef
Metadata
Title
Smoothed Particle Hydrodynamics Applied to Cartilage Deformation
Authors
Philip Boyer
Sean LeBlanc
Chris Joslin
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-134-3_10