2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Recent Innovations in Computing
In this paper, a comparison of the Statistical machine translation (SMT) and neural machine translation (NMT) for Punjabi to English in the fixed domain of health and tourism is provided. We have tried to answer does NMT perform equivalent well or better with respect to the SMT system? We have developed the three base models viz., SMT-based model using the Moses toolkit, followed by long short-term memory (LSTM) model and bidirectional LSTM model using the OpenNMT toolkit. All three models used the Punjabi–English parallel corpus of TDIL health and tourism. Finally, the quality of translation is validated using the automatic parameter like the BLEU score and the TER score. We observed that bidirectional LSTM performs better than simple LSTM an SMT system.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Garje, G.V., Bansode, A., Gandhi, S., Kulkarni, A.: Marathi to English sentence translator for simple assertive and interrogative sentences. Int. J. Comput. Appl. 138(5), 42–45 (2016). https://doi.org/10.5120/ijca2016908837 CrossRef Garje, G.V., Bansode, A., Gandhi, S., Kulkarni, A.: Marathi to English sentence translator for simple assertive and interrogative sentences. Int. J. Comput. Appl.
138(5), 42–45 (2016).
https://doi.org/10.5120/ijca2016908837
CrossRef
2.
go back to reference Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S.: Proceedings of ICRIC 2019. Recent Innovations in Computing, 2020. Lecture Notes in Electrical Engineering, vol. 597, pp. 3–920. Springer, Cham, Switzerland Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S.: Proceedings of ICRIC 2019. Recent Innovations in Computing, 2020. Lecture Notes in Electrical Engineering, vol. 597, pp. 3–920. Springer, Cham, Switzerland
3.
go back to reference Singh, U., Goyal, V., Singh, G.: Urdu to Punjabi machine translation: an incremental training approach. Int. J. Adv. Comput. Sci. Appl. 7(4), 227–238 (2016). https://doi.org/10.14569/ijacsa.2016.070428 CrossRef Singh, U., Goyal, V., Singh, G.: Urdu to Punjabi machine translation: an incremental training approach. Int. J. Adv. Comput. Sci. Appl.
7(4), 227–238 (2016).
https://doi.org/10.14569/ijacsa.2016.070428
CrossRef
4.
go back to reference Chaudhary, J.R., Patel, A.C.: Machine translation using deep learning: a survey. Int. J. Sci. Res. Sci. Eng. Technol. 4(2), 145–150 (2018) Chaudhary, J.R., Patel, A.C.: Machine translation using deep learning: a survey. Int. J. Sci. Res. Sci. Eng. Technol.
4(2), 145–150 (2018)
5.
go back to reference Mahata, S.K., Mandal, S., Das, D., Bandyopadhyay, S.: SMT vs NMT: a comparison over Hindi & Bengali simple sentences. In: International Conference on Natural Language Processing, Dec 2018, pp. 175–182. [Online]. Available: https://arxiv.org/abs/1812.04898 Mahata, S.K., Mandal, S., Das, D., Bandyopadhyay, S.: SMT vs NMT: a comparison over Hindi & Bengali simple sentences. In: International Conference on Natural Language Processing, Dec 2018, pp. 175–182. [Online]. Available:
https://arxiv.org/abs/1812.04898
6.
go back to reference Bombay, T.: Statistical machine translation with rule based re-ordering of source sentences. In: International Conference on Natural Language Processing, Aug 2008 Bombay, T.: Statistical machine translation with rule based re-ordering of source sentences. In: International Conference on Natural Language Processing, Aug 2008
7.
go back to reference Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C.: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), 2020. Lecture Notes in Networks and Systems, vol. 121, pp. 3–917. Springer, Cham, Switzerland Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C.: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), 2020. Lecture Notes in Networks and Systems, vol. 121, pp. 3–917. Springer, Cham, Switzerland
8.
go back to reference Visweswariah, K., Rajkumar, R., Gandhe, A., Ramanathan, A., Navratil, J.: A word reordering model for improved machine translation. In: EMNLP-2011, pp. 486–496. [Online]. Available: https://aclweb.org/anthology-new/D/D11/D11-1045.pdf Visweswariah, K., Rajkumar, R., Gandhe, A., Ramanathan, A., Navratil, J.: A word reordering model for improved machine translation. In: EMNLP-2011, pp. 486–496. [Online]. Available:
https://aclweb.org/anthology-new/D/D11/D11-1045.pdf
9.
go back to reference Anand, A., Bhattacharyya, P.: Literature survey: neural machine translation (2014) Anand, A., Bhattacharyya, P.: Literature survey: neural machine translation (2014)
10.
go back to reference He, W., He, Z., Wu, H., Wang, H.: Improved neural machine translation with SMT features. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016, no. 10, pp. 151–157 (2016) He, W., He, Z., Wu, H., Wang, H.: Improved neural machine translation with SMT features. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016, no. 10, pp. 151–157 (2016)
11.
go back to reference Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word problem in neural machine translation (2014). https://doi.org/10.3115/v1/P15-1002 Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word problem in neural machine translation (2014).
https://doi.org/10.3115/v1/P15-1002
12.
go back to reference TDIL CORPUS Homepage. https://www.tdil-dc.in/index.php?lang=enwww.tdil-dc.in. Last accessed 21 Nov 2018 TDIL CORPUS Homepage.
https://www.tdil-dc.in/index.php?lang=enwww.tdil-dc.in. Last accessed 21 Nov 2018
13.
go back to reference Bhalla, D., Joshi, N., Mathur, I.: Rule based transliteration scheme for English to Punjabi. Int. J. Nat. Lang. Comput. 2(2), 67–73 (2013). https://doi.org/10.5121/ijnlc.2013.2207 CrossRef Bhalla, D., Joshi, N., Mathur, I.: Rule based transliteration scheme for English to Punjabi. Int. J. Nat. Lang. Comput.
2(2), 67–73 (2013).
https://doi.org/10.5121/ijnlc.2013.2207
CrossRef
14.
go back to reference Azath, M., Kiros, T.: Statistical machine translator for English to Tigrigna translation. Int. J. Sci. Technol. Res. 9(1), 2095–2099 (2020) Azath, M., Kiros, T.: Statistical machine translator for English to Tigrigna translation. Int. J. Sci. Technol. Res.
9(1), 2095–2099 (2020)
15.
go back to reference Östling, R., Scherrer, Y., Tiedemann, J., Tang, G., Nieminen, T.: The Helsinki neural machine translation system, vol. 2, pp. 338–347 (2018). https://doi.org/10.18653/v1/w17-4733 Östling, R., Scherrer, Y., Tiedemann, J., Tang, G., Nieminen, T.: The Helsinki neural machine translation system, vol. 2, pp. 338–347 (2018).
https://doi.org/10.18653/v1/w17-4733
16.
go back to reference Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder–decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111 (2014). [Online]. Available: https://arxiv.org/pdf/1409.1259v2.pdf%5Cn; https://arxiv.org/abs/1409.1259 Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder–decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111 (2014). [Online]. Available:
https://arxiv.org/pdf/1409.1259v2.pdf%5Cn;
https://arxiv.org/abs/1409.1259
17.
go back to reference Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation, pp. 1–23 (2016). [Online]. Available: https://arxiv.org/abs/1609.08144 Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation, pp. 1–23 (2016). [Online]. Available:
https://arxiv.org/abs/1609.08144
18.
go back to reference Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization, no. 2013, pp. 1–8 (2014) Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization, no. 2013, pp. 1–8 (2014)
19.
go back to reference Dušek, O., Novikova, J., Rieser, V.: Evaluating the state-of-the-art of end-to-end natural language generation: the E2E NLG challenge. Comput. Speech Lang. 59, 123–156 (2020). https://doi.org/10.1016/j.csl.2019.06.009 CrossRef Dušek, O., Novikova, J., Rieser, V.: Evaluating the state-of-the-art of end-to-end natural language generation: the E2E NLG challenge. Comput. Speech Lang.
59, 123–156 (2020).
https://doi.org/10.1016/j.csl.2019.06.009
CrossRef
20.
go back to reference OPENMT Homepage. https://github.com/OpenNMT/OpenNMT-py. Last accessed 21 Nov 2018 OPENMT Homepage.
https://github.com/OpenNMT/OpenNMT-py. Last accessed 21 Nov 2018
- Title
- SMT Versus NMT: An Experiment with Punjabi–English
- DOI
- https://doi.org/10.1007/978-981-15-8297-4_6
- Authors:
-
Kamal Deep
Ajit Kumar
Vishal Goyal
- Publisher
- Springer Singapore
- Sequence number
- 6