Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

13-03-2020 | Review Paper | Issue 2/2020

Acta Mechanica Sinica 2/2020

Snow-powered research on utility-scale wind turbine flows

Journal:
Acta Mechanica Sinica > Issue 2/2020
Authors:
Jiarong Hong, Aliza Abraham

Abstract

This paper provides a review of the general experimental methodology of snow-powered flow visualization and super-large-scale particle image velocimetry (SLPIV), the corresponding field deployments and major scientific findings from our work on a 2.5 MW utility-scale wind turbine at the Eolos field station. The field measurements were conducted to investigate the incoming flow in the induction zone and the near-wake flows from different perspectives. It has been shown that these snow-powered measurements can provide sufficient spatiotemporal resolution and fields of view to characterize both qualitatively and quantitatively the incoming flow, all the major coherent structures generated by the turbine (e.g., blade, nacelle and tower vortices, etc.) as well as the development and interaction of these structures in the near wake. Our work has further revealed several interesting behaviors of near-wake flows (e.g., wake contraction, dynamic wake modulation, meandering and deflection of the nacelle wake, etc.), and their connections with constantly-changing inflows and turbine operation, which are uniquely associated with utility-scale turbines. These findings have demonstrated that the near wake flows, though highly complex, can be predicted with substantial statistical confidence using supervisory control and data acquisition (SCADA) and structural response information readily available from current utility-scale turbines. Such knowledge can be potentially incorporated into wake development models and turbine controllers for wind farm optimization in the future.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Acta Mechanica Sinica 2/2020 Go to the issue

Premium Partners

    Image Credits