Skip to main content
Top
Published in:

01-12-2023 | Original Article

Social network analysis of Twitter interactions: a directed multilayer network approach

Authors: Austin P. Logan, Phillip M. LaCasse, Brian J. Lunday

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effective employment of social media for any social influence outcome requires a detailed understanding of the target audience. Social media provides a rich repository of self-reported information that provides insight regarding the sentiments and implied priorities of an online population. Using Social Network Analysis, this research models user interactions on Twitter as a weighted, directed network. Topic modeling through Latent Dirichlet Allocation identifies the topics of discussion in Tweets, which this study uses to induce a directed multilayer network wherein users (in one layer) are connected to the conversations and topics (in a second layer) in which they have participated, with inter-layer connections representing user participation in conversations. Analysis of the resulting network identifies both influential users and highly connected groups of individuals, informing an understanding of group dynamics and individual connectivity. The results demonstrate that the generation of a topically-focused social network to represent conversations yields more robust findings regarding influential users, particularly when analysts collect Tweets from a variety of discussions through more general search queries. Within the analysis, PageRank performed best among four measures used to rank individual influence within this problem context. In contrast, the results of applying both the Greedy Modular Algorithm and the Leiden Algorithm to identify communities were mixed; each method yielded valuable insights, but neither technique was uniformly superior. The demonstrated four-step process is readily replicable, and an interested user can automate the process with relatively low effort or expense.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice-Hall Inc., Upper Saddle River, NJ Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice-Hall Inc., Upper Saddle River, NJ
go back to reference Aiello LM, Barrat A, Cattuto C, et al (2010) Link creation and profile alignment in the aNobii social network. In: 2010 IEEE Second International Conference on Social Computing, IEEE, pp 249–256 Aiello LM, Barrat A, Cattuto C, et al (2010) Link creation and profile alignment in the aNobii social network. In: 2010 IEEE Second International Conference on Social Computing, IEEE, pp 249–256
go back to reference Allard K (1990) Command, control, and the common defense. Yale University Press, New Haven, CT Allard K (1990) Command, control, and the common defense. Yale University Press, New Haven, CT
go back to reference Bakshy E, Hofman JM, Mason WA, et al (2011) Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM, pp 65–74 Bakshy E, Hofman JM, Mason WA, et al (2011) Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM, pp 65–74
go back to reference Barrios F, López F, Argerich L, et al (2015) Variations of the similarity function of TextRank for automated summarization. In: 2015 Argentine Symposium on Artificial Intelligence, Sociedad Argentina de Informática e Investigación Operativa (SADIO), pp 65–72 Barrios F, López F, Argerich L, et al (2015) Variations of the similarity function of TextRank for automated summarization. In: 2015 Argentine Symposium on Artificial Intelligence, Sociedad Argentina de Informática e Investigación Operativa (SADIO), pp 65–72
go back to reference Bhavnani V, Galphat Y, Bhawsinghka G, et al (2021) A survey on detecting influential user in social networking. In: 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), IEEE, pp 1–7 Bhavnani V, Galphat Y, Bhawsinghka G, et al (2021) A survey on detecting influential user in social networking. In: 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), IEEE, pp 1–7
go back to reference Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3(Jan):993–1022 Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3(Jan):993–1022
go back to reference Bouma G (2009) Normalized (pointwise) mutual information in collocation extraction. In: 2009 Proceedings of the Biennial German Society for Computational Linguistics & Language Technology, vol 30. GSCL, pp 31–40 Bouma G (2009) Normalized (pointwise) mutual information in collocation extraction. In: 2009 Proceedings of the Biennial German Society for Computational Linguistics & Language Technology, vol 30. GSCL, pp 31–40
go back to reference Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066–111CrossRef Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066–111CrossRef
go back to reference Dewi FK, Yudhoatmojo SB, Budi I (2017) Identification of opinion leader on rumor spreading in online social network twitter using edge weighting and centrality measure weighting. In: 2017 Twelfth International Conference on Digital Information Management (ICDIM), IEEE, pp 313–318 Dewi FK, Yudhoatmojo SB, Budi I (2017) Identification of opinion leader on rumor spreading in online social network twitter using edge weighting and centrality measure weighting. In: 2017 Twelfth International Conference on Digital Information Management (ICDIM), IEEE, pp 313–318
go back to reference Doerr C, Blenn N, Van Mieghem P (2013) Lognormal infection times of online information spread. PloS ONE 8(5):e64-349CrossRef Doerr C, Blenn N, Van Mieghem P (2013) Lognormal infection times of online information spread. PloS ONE 8(5):e64-349CrossRef
go back to reference Erlandsson F, Bródka P, Borg A et al (2016) Finding influential users in social media using association rule learning. Entropy 18(5):164CrossRef Erlandsson F, Bródka P, Borg A et al (2016) Finding influential users in social media using association rule learning. Entropy 18(5):164CrossRef
go back to reference Featherstone JD, Barnett GA (2020) Validating sentiment analysis on opinion mining using self-reported attitude scores. In: 2020 Seventh International Conference on Social Networks Analysis. Management and Security (SNAMS), IEEE, pp 1–4 Featherstone JD, Barnett GA (2020) Validating sentiment analysis on opinion mining using self-reported attitude scores. In: 2020 Seventh International Conference on Social Networks Analysis. Management and Security (SNAMS), IEEE, pp 1–4
go back to reference Featherstone JD, Barnett GA, Ruiz JB et al (2020) Exploring childhood anti-vaccine and pro-vaccine communities on twitter-a perspective from influential users. Online Soc Netw Media 20(100):105 Featherstone JD, Barnett GA, Ruiz JB et al (2020) Exploring childhood anti-vaccine and pro-vaccine communities on twitter-a perspective from influential users. Online Soc Netw Media 20(100):105
go back to reference Featherstone JD, Ruiz JB, Barnett GA et al (2020) Exploring childhood vaccination themes and public opinions on twitter: A semantic network analysis. Telemat Inf 54(101):474 Featherstone JD, Ruiz JB, Barnett GA et al (2020) Exploring childhood vaccination themes and public opinions on twitter: A semantic network analysis. Telemat Inf 54(101):474
go back to reference Freeman L (2004) The development of social network analysis. Stud Soc Sci 1(687):159–167 Freeman L (2004) The development of social network analysis. Stud Soc Sci 1(687):159–167
go back to reference Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef
go back to reference Gazdaggyori Z (2021) A case study of Gamestop. Bachelor’s thesis, Aarhus University Gazdaggyori Z (2021) A case study of Gamestop. Bachelor’s thesis, Aarhus University
go back to reference Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). SciPy, Pasadena, CA, pp 11–15 Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). SciPy, Pasadena, CA, pp 11–15
go back to reference Hamraoui I, Boubaker A (2022) Impact of Twitter sentiment on stock price returns. Soc Netw Anal Min 12(1):1–15CrossRef Hamraoui I, Boubaker A (2022) Impact of Twitter sentiment on stock price returns. Soc Netw Anal Min 12(1):1–15CrossRef
go back to reference Ji J, Robbins M, Featherstone JD et al (2022) Comparison of public discussions of gene editing on social media between the united states and china. Plos one 17(5):e0267406CrossRef Ji J, Robbins M, Featherstone JD et al (2022) Comparison of public discussions of gene editing on social media between the united states and china. Plos one 17(5):e0267406CrossRef
go back to reference Jin X (2020) Exploring crisis communication and information dissemination on social media: social network analysis of Hurricane Irma tweets. J Int Crisis Risk Commun Res 3(2):179–210CrossRef Jin X (2020) Exploring crisis communication and information dissemination on social media: social network analysis of Hurricane Irma tweets. J Int Crisis Risk Commun Res 3(2):179–210CrossRef
go back to reference Jiwanggi MA, Adriani M (2016) Topic summarization of microblog document in Bahasa Indonesia using the phrase reinforcement algorithm. Proc Comput Sci 81:229–236CrossRef Jiwanggi MA, Adriani M (2016) Topic summarization of microblog document in Bahasa Indonesia using the phrase reinforcement algorithm. Proc Comput Sci 81:229–236CrossRef
go back to reference Kalepalli Y, Tasneem S, Teja PDP, et al (2020) Effective comparison of LDA with LSA for topic modelling. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, pp 1245–1250 Kalepalli Y, Tasneem S, Teja PDP, et al (2020) Effective comparison of LDA with LSA for topic modelling. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, pp 1245–1250
go back to reference Kolda TG, Bader BW, Kenny JP (2005) Higher-order web link analysis using multilinear algebra. In: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, pp 8–pp Kolda TG, Bader BW, Kenny JP (2005) Higher-order web link analysis using multilinear algebra. In: Fifth IEEE International Conference on Data Mining (ICDM’05), IEEE, pp 8–pp
go back to reference Landau E (1895) Zur relativen wertbemessung der turnierresultate. Deutsches Wochenschach 11:366–369 Landau E (1895) Zur relativen wertbemessung der turnierresultate. Deutsches Wochenschach 11:366–369
go back to reference Legradi J (2009) An exploratory social network analysis of military and civilian emergency operation centers focusing on organization structure. Master’s thesis, Air Force Institute of Technology, Wright Patterson AFB, OH Legradi J (2009) An exploratory social network analysis of military and civilian emergency operation centers focusing on organization structure. Master’s thesis, Air Force Institute of Technology, Wright Patterson AFB, OH
go back to reference Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in directed networks: A survey. Phys Rep 533(4):95–142MathSciNetCrossRef Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in directed networks: A survey. Phys Rep 533(4):95–142MathSciNetCrossRef
go back to reference Mihalcea R, Tarau P (2004) Textrank: Bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. ACL, pp 404–411 Mihalcea R, Tarau P (2004) Textrank: Bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. ACL, pp 404–411
go back to reference Mimno D, Wallach H, Talley E, et al (2011) Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. ACL, pp 262–272 Mimno D, Wallach H, Talley E, et al (2011) Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. ACL, pp 262–272
go back to reference Moreno J (1933) Psychological and social organization of groups in the community. In: Proceedings & Addresses. American Association on Mental Deficiency Moreno J (1933) Psychological and social organization of groups in the community. In: Proceedings & Addresses. American Association on Mental Deficiency
go back to reference Moreno JL (1932) Application of the group method to classification. National committee on prisons and prison labor Moreno JL (1932) Application of the group method to classification. National committee on prisons and prison labor
go back to reference Newman D, Lau JH, Grieser K, et al (2010) Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. ACL, pp 100–108 Newman D, Lau JH, Grieser K, et al (2010) Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. ACL, pp 100–108
go back to reference Newman ME (2016) Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys Rev E 94(5):052–315CrossRef Newman ME (2016) Equivalence between modularity optimization and maximum likelihood methods for community detection. Phys Rev E 94(5):052–315CrossRef
go back to reference Pacheco D, Hui PM, Torres-Lugo C, et al (2021) Uncovering coordinated networks on social media: Methods and case studies. In: 2021 Proceedings of the AAAI International Conference on Web and Social Media (ICWSM). AAAI, pp 455–466 Pacheco D, Hui PM, Torres-Lugo C, et al (2021) Uncovering coordinated networks on social media: Methods and case studies. In: 2021 Proceedings of the AAAI International Conference on Web and Social Media (ICWSM). AAAI, pp 455–466
go back to reference Page L, Brin S, Motwani R, et al (1999) The PageRank citation ranking: Bringing order to the web. Tech. Rep. SIDL-WP-1999-0120, Stanford University InfoLab, Stanford, CA Page L, Brin S, Motwani R, et al (1999) The PageRank citation ranking: Bringing order to the web. Tech. Rep. SIDL-WP-1999-0120, Stanford University InfoLab, Stanford, CA
go back to reference Perdana RS, Pinandito A (2018) Combining likes-retweet analysis and naive Bayes classifier within Twitter for sentiment analysis. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 10(1-8):41–46 Perdana RS, Pinandito A (2018) Combining likes-retweet analysis and naive Bayes classifier within Twitter for sentiment analysis. Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 10(1-8):41–46
go back to reference Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959CrossRef Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959CrossRef
go back to reference Pudjajana AM, Manongga D, Iriani A, et al (2018) Identification of influencers in social media using social network analysis (SNA). In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, pp 400–404 Pudjajana AM, Manongga D, Iriani A, et al (2018) Identification of influencers in social media using social network analysis (SNA). In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, pp 400–404
go back to reference Rahmadan MC, Hidayanto AN, Ekasari DS et al (2020) Sentiment analysis and topic modelling using the LDA method related to the flood disaster in Jakarta on Twitter. In :2020 International Conference on Informatics. Multimedia, Cyber and Information System (ICIMCIS), IEEE, pp 126–130 Rahmadan MC, Hidayanto AN, Ekasari DS et al (2020) Sentiment analysis and topic modelling using the LDA method related to the flood disaster in Jakarta on Twitter. In :2020 International Conference on Informatics. Multimedia, Cyber and Information System (ICIMCIS), IEEE, pp 126–130
go back to reference Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM, pp 399–408 Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM, pp 399–408
go back to reference Rudrapal D, Das A, Bhattacharya B (2018) A survey on automatic twitter event summarization. J Inf Process Syst 14(1):79–100 Rudrapal D, Das A, Bhattacharya B (2018) A survey on automatic twitter event summarization. J Inf Process Syst 14(1):79–100
go back to reference Ruiz J, Featherstone JD, Barnett GA (2021) Identifying vaccine hesitant communities on twitter and their geolocations: a network approach Ruiz J, Featherstone JD, Barnett GA (2021) Identifying vaccine hesitant communities on twitter and their geolocations: a network approach
go back to reference Salehi A, Ozer M, Davulcu H (2018) Sentiment-driven community profiling and detection on social media. In: Proceedings of the 29th ACM Conference on Hypertext and Social Media. ACM, pp 229–237 Salehi A, Ozer M, Davulcu H (2018) Sentiment-driven community profiling and detection on social media. In: Proceedings of the 29th ACM Conference on Hypertext and Social Media. ACM, pp 229–237
go back to reference Scott J, Carrington PJ (2011) The SAGE Handbook of Social Network Analysis. SAGE Publications, London, UK Scott J, Carrington PJ (2011) The SAGE Handbook of Social Network Analysis. SAGE Publications, London, UK
go back to reference Sheth A, Shalin VL, Kursuncu U (2022) Defining and detecting toxicity on social media: context and knowledge are key. Neurocomputing 490:312–318CrossRef Sheth A, Shalin VL, Kursuncu U (2022) Defining and detecting toxicity on social media: context and knowledge are key. Neurocomputing 490:312–318CrossRef
go back to reference Sievert C, Shirley K (2014) Ldavis: A method for visualizing and interpreting topics. In: Proceedings of Workshop on Interactive Language Learning, Visualization, and Interfaces, Association for Computational Linguistics, pp 63–70 Sievert C, Shirley K (2014) Ldavis: A method for visualizing and interpreting topics. In: Proceedings of Workshop on Interactive Language Learning, Visualization, and Interfaces, Association for Computational Linguistics, pp 63–70
go back to reference Traag VA, Waltman L, Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9(1):1–12CrossRef Traag VA, Waltman L, Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9(1):1–12CrossRef
go back to reference Tsopze N, Domgue FG (2021) Boolean factor based community extraction from directed networks with the non reciprocal link relationship. Inf Sci 569:544–556MathSciNetCrossRef Tsopze N, Domgue FG (2021) Boolean factor based community extraction from directed networks with the non reciprocal link relationship. Inf Sci 569:544–556MathSciNetCrossRef
go back to reference Tsugawa S, Ohsaki H (2015) Negative messages spread rapidly and widely on social media. In: Proceedings of the 2015 ACM on Conference on Online Social Networks. ACM, pp 151–160 Tsugawa S, Ohsaki H (2015) Negative messages spread rapidly and widely on social media. In: Proceedings of the 2015 ACM on Conference on Online Social Networks. ACM, pp 151–160
go back to reference Venkatesan M, Prabhavathy P (2019) Graph based unsupervised learning methods for edge and node anomaly detection in social network. In: 2019 IEEE 1st International Conference on Energy. Systems and Information Processing (ICESIP), IEEE, pp 1–5 Venkatesan M, Prabhavathy P (2019) Graph based unsupervised learning methods for edge and node anomaly detection in social network. In: 2019 IEEE 1st International Conference on Energy. Systems and Information Processing (ICESIP), IEEE, pp 1–5
go back to reference Yang Y, Hsu JH, Löfgren K et al (2021) Cross-platform comparison of framed topics in Twitter and Weibo: machine learning approaches to social media text mining. Soc Netw Anal Min 11(1):1–18CrossRef Yang Y, Hsu JH, Löfgren K et al (2021) Cross-platform comparison of framed topics in Twitter and Weibo: machine learning approaches to social media text mining. Soc Netw Anal Min 11(1):1–18CrossRef
go back to reference Zhang B, Vos M (2015) How and why some issues spread fast in social media. Online J Commun Media Technol 5(1):90–113 Zhang B, Vos M (2015) How and why some issues spread fast in social media. Online J Commun Media Technol 5(1):90–113
Metadata
Title
Social network analysis of Twitter interactions: a directed multilayer network approach
Authors
Austin P. Logan
Phillip M. LaCasse
Brian J. Lunday
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01063-2

Premium Partner