Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

8. Social Network Data and Predictive Mining (Business Intelligence 2)

Author : Amy Van Looy

Published in: Social Media Management

Publisher: Springer International Publishing

share
SHARE

Abstract

This chapter covers the second part of our business intelligence discussion and makes the reader learn how organizations can create business value by analyzing social network data. Diverse information about a certain person can be collected from different social media tools and combined into a database to obtain more complete profiles of employees, customers, or prospects (i.e., social engineering). The latter can supplement the social CRM database (see Chap. 5). Particularly, social media may uncover information about what people post, share, or like but also to whom they are connected. By combining or aggregating such information for many individuals in social networks, organizations can start predicting trends, e.g., to improve their targeted marketing (see Chap. 4) or to predict which people are more likely to churn, fraud, resign, etc. Hence, social media are seen as big data in the sense that they can provide massive amounts of real-time data about many Internet users, which can be used to predict someone’s future behavior based on the past behavior of others. This chapter explains how social networks can be built from social media data and introduces concepts such as peer influence and homophily. The chapter concludes with big data challenges to social network data.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Abbas, A. M. (2021). Social network analysis using deep learning: Applications and schemes. Social Network Analysis and Mining, 11(1), 1–21. CrossRef Abbas, A. M. (2021). Social network analysis using deep learning: Applications and schemes. Social Network Analysis and Mining, 11(1), 1–21. CrossRef
go back to reference Aral, S., & Walker, D. (2011). Identifying social influence in networks using randomized experiments. IEEE Intelligent Systems, 26(5), 91–96. CrossRef Aral, S., & Walker, D. (2011). Identifying social influence in networks using randomized experiments. IEEE Intelligent Systems, 26(5), 91–96. CrossRef
go back to reference Cab, U., & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis problems and applications. Physica A, 535, 1–38. Cab, U., & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis problems and applications. Physica A, 535, 1–38.
go back to reference McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. CrossRef McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. CrossRef
go back to reference Minnaert, B. (2012). Guest lecture of Bart Minnaert in the course Creating Value Using Social Media at Ghent University, November 2012. Minnaert, B. (2012). Guest lecture of Bart Minnaert in the course Creating Value Using Social Media at Ghent University, November 2012.
go back to reference Provost, F., Dalessandro, B., Hook, R., Zhang, X., & Murray, A. (2009). Audience selection for on-line brand advertising: Privacy-friendly social network targeting. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. Provost, F., Dalessandro, B., Hook, R., Zhang, X., & Murray, A. (2009). Audience selection for on-line brand advertising: Privacy-friendly social network targeting. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining.
go back to reference Rogers, E. M. (2003). The diffusion of innovations (5th ed.). Free Press. Rogers, E. M. (2003). The diffusion of innovations (5th ed.). Free Press.
go back to reference Rousidis, D., Koukaras, P., & Tjortjis, C. (2020). Social media prediction: A literature review. Multimedia Tools and Applications, 79(9–10), 6279–6311. CrossRef Rousidis, D., Koukaras, P., & Tjortjis, C. (2020). Social media prediction: A literature review. Multimedia Tools and Applications, 79(9–10), 6279–6311. CrossRef
go back to reference Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8, 183470–183487. CrossRef Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8, 183470–183487. CrossRef
Metadata
Title
Social Network Data and Predictive Mining (Business Intelligence 2)
Author
Amy Van Looy
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-99094-7_8