Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

07-02-2018 | Methodologies and Application | Issue 11/2019

Soft Computing 11/2019

Soft-clustering-based local multiple kernel learning algorithm for classification

Journal:
Soft Computing > Issue 11/2019
Authors:
Qingchao Wang, Guangyuan Fu, Hongqiao Wang, Linlin Li, Shuai Huang
Important notes
Communicated by V. Loia.

Abstract

Local multiple kernel learning is a promising strategy because it could learn a sample-specific composite kernel according to the characteristic of samples. However, these methods are insufficient to describe the sample diversity and correlation, which leads to the classifier less reliable. In this paper, we propose a soft-clustering-based local multiple kernel learning algorithm to tackle the issues above. In the proposed algorithm, there is a fuzzy clustering preprocessing for the training data and then the kernel weights are calculated on the groups. We use an alternative optimization method to learn the kernel weights and support vector coefficients. The final combination weights of kernels are determined by the kernel weights of clusters and the probability of samples falling into the clusters. Therefore, our method is actually a sample-based LMKL method with a soft constraint on the kernel weights. This constraint is actually the representation of the correlation of samples. The experiments on synthetic dataset indicate the kernel weights solved by our algorithm are better suitable for the characteristics of the dataset. Then a series of experiments verify the improvement on classification accuracies.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2019

Soft Computing 11/2019 Go to the issue

Premium Partner

    Image Credits