Skip to main content
Top

2017 | OriginalPaper | Chapter

6. Soft Tissue Finite Element Modeling and Calibration of the Material Properties in the Context of Computer-Assisted Medical Interventions

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter aims at illustrating how patient-specific models of human organs and soft tissues can be implemented into FE packages. First is addressed the question of the generation of patient-specific FE models compatible with the clinical constraints. Then is discussed the calibration of the material properties, with choices that should be done between calibrations based on ex vivo or in vivo tissues loadings. The example of computer-assisted maxillofacial surgery is addressed and results based on patients’ data are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Richter, M., Mossaz, C., De Tonnac, N., Jaquinet, A., Laurent, F., & Goudot, P. (2002). Chirurgie correctice des malformations ou “dysmorphies” maxillomandibulaires “avant d’agir”. Encycl Méd Chir. Richter, M., Mossaz, C., De Tonnac, N., Jaquinet, A., Laurent, F., & Goudot, P. (2002). Chirurgie correctice des malformations ou “dysmorphies” maxillomandibulaires “avant d’agir”. Encycl Méd Chir.
2.
go back to reference Delingette, H., Subsol, G., Cotin, S., & Pignon, J. (1994). Craniofacial surgery simulation testbed. In Visualization in Biomedical Computing 1994 (pp. 607–618). International Society for Optics and Photonics. Delingette, H., Subsol, G., Cotin, S., & Pignon, J. (1994). Craniofacial surgery simulation testbed. In Visualization in Biomedical Computing 1994 (pp. 607–618). International Society for Optics and Photonics.
3.
go back to reference Waters, Keith. (1996). Synthetic muscular contraction on facial tissue derived from computerized tomography data. Computer integrated surgery-technology and clinical applications. Cambridge, London: MIT Press. Waters, Keith. (1996). Synthetic muscular contraction on facial tissue derived from computerized tomography data. Computer integrated surgery-technology and clinical applications. Cambridge, London: MIT Press.
4.
go back to reference Keeve, E., Girod, S., & Girod, B. (1996). Computer-aided craniofacial surgery. In Proceedings of Computer Assisted Radiology CAR 96 (pp. 757–762). Keeve, E., Girod, S., & Girod, B. (1996). Computer-aided craniofacial surgery. In Proceedings of Computer Assisted Radiology CAR 96 (pp. 757–762).
5.
go back to reference Teschner, M. (2001). Direct computation of soft-tissue deformation in craniofacial surgery simulation. Shaker Verlag. Teschner, M. (2001). Direct computation of soft-tissue deformation in craniofacial surgery simulation. Shaker Verlag.
6.
go back to reference Barre, S., Fernandez-Maloigne, C., Paume, P., & Subrenat, G. (2000). Simulating facial surgery. In Electronic imaging (pp. 334–345). International Society for Optics and Photonics. Barre, S., Fernandez-Maloigne, C., Paume, P., & Subrenat, G. (2000). Simulating facial surgery. In Electronic imaging (pp. 334–345). International Society for Optics and Photonics.
7.
go back to reference Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., & Parish, Y. I. H. (1996). Simulating facial surgery using finite element models. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 421–428). ACM. Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., & Parish, Y. I. H. (1996). Simulating facial surgery using finite element models. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 421–428). ACM.
8.
go back to reference Keeve, E., Girod, S., Kikinis, R., & Girod, B. (1998). Deformable modeling of facial tissue for craniofacial surgery simulation. Computer Aided Surgery, 3(5), 228–238.CrossRef Keeve, E., Girod, S., Kikinis, R., & Girod, B. (1998). Deformable modeling of facial tissue for craniofacial surgery simulation. Computer Aided Surgery, 3(5), 228–238.CrossRef
9.
go back to reference Zachow, S., Gladiline, E., Hege, H. C., & Deuflhard, P. (2000). Finite-element simulation of soft tissue deformation. In Proceedings of CARS (pp. 23–28). Citeseer. Zachow, S., Gladiline, E., Hege, H. C., & Deuflhard, P. (2000). Finite-element simulation of soft tissue deformation. In Proceedings of CARS (pp. 23–28). Citeseer.
10.
go back to reference Chabanas, M., Luboz, V., & Payan, Y. (2003). Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis, 7(2), 131–151.CrossRef Chabanas, M., Luboz, V., & Payan, Y. (2003). Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis, 7(2), 131–151.CrossRef
11.
go back to reference Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., & Suetens, P. (2007). Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Medical Image Analysis, 11(3), 282–301.CrossRef Mollemans, W., Schutyser, F., Nadjmi, N., Maes, F., & Suetens, P. (2007). Predicting soft tissue deformations for a maxillofacial surgery planning system: From computational strategies to a complete clinical validation. Medical Image Analysis, 11(3), 282–301.CrossRef
12.
go back to reference Rouvière, H., & Delmas, A. (2002). Anatomie humaine: Descriptive, topographique et fonctionnelle. Tête et cou, vol. 1. Elsevier Masson. Rouvière, H., & Delmas, A. (2002). Anatomie humaine: Descriptive, topographique et fonctionnelle. Tête et cou, vol. 1. Elsevier Masson.
13.
go back to reference Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2010). Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 469–482.CrossRef Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2010). Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation. Computer Methods in Biomechanics and Biomedical Engineering, 13(4), 469–482.CrossRef
14.
go back to reference Chabanas, M. (2002). Modélisation des tissus mous de la face pour la chirurgie orthognatique assistée par ordinateur. Ph.D. thesis, Université Joseph-Fourier-Grenoble I. Chabanas, M. (2002). Modélisation des tissus mous de la face pour la chirurgie orthognatique assistée par ordinateur. Ph.D. thesis, Université Joseph-Fourier-Grenoble I.
15.
go back to reference Couteau, B., Payan, Y., & Lavallée, S. (2000). The mesh-matching algorithm: An automatic 3D mesh generator for finite element structures. Journal of Biomechanics, 33(8), 1005–1009.CrossRef Couteau, B., Payan, Y., & Lavallée, S. (2000). The mesh-matching algorithm: An automatic 3D mesh generator for finite element structures. Journal of Biomechanics, 33(8), 1005–1009.CrossRef
16.
go back to reference Bucki, M., Lobos, C., & Payan, Y. (2010). A fast and robust patient specific finite element mesh registration technique: Application to 60 clinical cases. Medical Image Analysis, 14(3), 303–317.CrossRef Bucki, M., Lobos, C., & Payan, Y. (2010). A fast and robust patient specific finite element mesh registration technique: Application to 60 clinical cases. Medical Image Analysis, 14(3), 303–317.CrossRef
17.
go back to reference Gérard, J.-M., Ohayon, J., Luboz, V., Perrier, P., & Payan, Y. (2005). Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique: Application to the biomechanics of speech production. Medical Engineering & Physics, 27(10), 884–892.CrossRef Gérard, J.-M., Ohayon, J., Luboz, V., Perrier, P., & Payan, Y. (2005). Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique: Application to the biomechanics of speech production. Medical Engineering & Physics, 27(10), 884–892.CrossRef
18.
go back to reference Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221–2231.CrossRef Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221–2231.CrossRef
19.
go back to reference Ottensmeyer, M. P. (2001). Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance. Ph.D. thesis, Massachusetts Institute of Technology. Ottensmeyer, M. P. (2001). Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance. Ph.D. thesis, Massachusetts Institute of Technology.
20.
go back to reference Gefen, A., & Margulies, S. S. (2004). Are in vivo and in situ brain tissues mechanically similar? Journal of Biomechanics, 37(9), 1339–1352.CrossRef Gefen, A., & Margulies, S. S. (2004). Are in vivo and in situ brain tissues mechanically similar? Journal of Biomechanics, 37(9), 1339–1352.CrossRef
21.
go back to reference Grahame, R., & Holt, P. J. L. (1969). The influence of ageing on the in vivo elasticity of human skin. Gerontology, 15(2–3), 121–139.CrossRef Grahame, R., & Holt, P. J. L. (1969). The influence of ageing on the in vivo elasticity of human skin. Gerontology, 15(2–3), 121–139.CrossRef
22.
go back to reference Kauer, M., Vuskovic, V., Dual, J., Székely, G., & Bajka, M. (2002). Inverse finite element characterization of soft tissues. Medical Image Analysis, 6(3), 275–287.CrossRefMATH Kauer, M., Vuskovic, V., Dual, J., Székely, G., & Bajka, M. (2002). Inverse finite element characterization of soft tissues. Medical Image Analysis, 6(3), 275–287.CrossRefMATH
23.
go back to reference Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J. M., et al. (2000). In vivo model of the mechanical properties of the human skin under suction. Skin Research and technology, 6(4), 214–221.CrossRef Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J. M., et al. (2000). In vivo model of the mechanical properties of the human skin under suction. Skin Research and technology, 6(4), 214–221.CrossRef
24.
go back to reference Carter, F. J., Frank, T. G., Davies, P. J., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231–236.CrossRef Carter, F. J., Frank, T. G., Davies, P. J., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231–236.CrossRef
25.
go back to reference Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.CrossRef Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.CrossRef
26.
go back to reference Jemec, G. B. E., Selvaag, E., Ågren, M., & Wulf, H. C. (2001). Measurement of the mechanical properties of skin with ballistometer and suction cup. Skin Research and Technology, 7(2), 122–126.CrossRef Jemec, G. B. E., Selvaag, E., Ågren, M., & Wulf, H. C. (2001). Measurement of the mechanical properties of skin with ballistometer and suction cup. Skin Research and Technology, 7(2), 122–126.CrossRef
27.
go back to reference Chen, E. J., Novakofski, J., Jenkins, W. K., & O’Brien, W. (1996). Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(1):191–194. Chen, E. J., Novakofski, J., Jenkins, W. K., & O’Brien, W. (1996). Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(1):191–194.
28.
go back to reference Gennisson, J.-L., Baldeweck, T., Tanter, M., Catheline, S., Fink, M., Sandrin, L., et al. (2004). Assessment of elastic parameters of human skin using dynamic elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(8), 980–989.CrossRef Gennisson, J.-L., Baldeweck, T., Tanter, M., Catheline, S., Fink, M., Sandrin, L., et al. (2004). Assessment of elastic parameters of human skin using dynamic elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(8), 980–989.CrossRef
29.
go back to reference Schiavone, P., Promayon, E., & Payan, Y. (2010). LASTIC: A light aspiration device for in vivo soft tissue characterization. In Biomedical simulation (pp. 1–10). Springer. Schiavone, P., Promayon, E., & Payan, Y. (2010). LASTIC: A light aspiration device for in vivo soft tissue characterization. In Biomedical simulation (pp. 1–10). Springer.
30.
go back to reference Luboz, V., Promayon, E., & Payan, Y. (2014). Linear elastic properties of the facial soft tissues using an aspiration device: Towards patient specific characterization. Annals of Biomedical Engineering, 42(11), 2369–2378.CrossRef Luboz, V., Promayon, E., & Payan, Y. (2014). Linear elastic properties of the facial soft tissues using an aspiration device: Towards patient specific characterization. Annals of Biomedical Engineering, 42(11), 2369–2378.CrossRef
31.
go back to reference Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). Shaping by stiffening: A modeling study for lips. Motor Control, 15(1), 141–168.CrossRef Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). Shaping by stiffening: A modeling study for lips. Motor Control, 15(1), 141–168.CrossRef
32.
go back to reference Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). A 3D finite element muscle model and its application in driving speech articulators. In 23rd Congress of the International Society of Biomechanics (ISB2011), Paper–ID. Nazari, M. A., Perrier, P., Chabanas, M., & Payan, Y. (2011). A 3D finite element muscle model and its application in driving speech articulators. In 23rd Congress of the International Society of Biomechanics (ISB2011), Paper–ID.
33.
go back to reference Stavness, I., Nazari, M. A., Perrier, P., Demolin, D., & Payan, Y. (2013). A biomechanical modeling study of the effects of the orbicularis oris muscle and jaw posture on lip shape. Journal of Speech, Language, and Hearing Research, 56(3), 878–890.CrossRef Stavness, I., Nazari, M. A., Perrier, P., Demolin, D., & Payan, Y. (2013). A biomechanical modeling study of the effects of the orbicularis oris muscle and jaw posture on lip shape. Journal of Speech, Language, and Hearing Research, 56(3), 878–890.CrossRef
34.
go back to reference Chabanas, M., Payan, Y., Marécaux, C., Swider, P., & Boutault, F. (2004). Comparison of linear and non-linear soft tissue models with post-operative ct scan in maxillofacial surgery. In Medical Simulation (pp. 19–27). Springer. Chabanas, M., Payan, Y., Marécaux, C., Swider, P., & Boutault, F. (2004). Comparison of linear and non-linear soft tissue models with post-operative ct scan in maxillofacial surgery. In Medical Simulation (pp. 19–27). Springer.
35.
go back to reference Wittek, A., Hawkins, T., & Miller, K. (2009). On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomechanics and Modeling in Mechanobiology, 8(1), 77–84.CrossRef Wittek, A., Hawkins, T., & Miller, K. (2009). On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomechanics and Modeling in Mechanobiology, 8(1), 77–84.CrossRef
Metadata
Title
Soft Tissue Finite Element Modeling and Calibration of the Material Properties in the Context of Computer-Assisted Medical Interventions
Author
Yohan Payan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45071-1_6