Skip to main content
Top

2011 | OriginalPaper | Chapter

4. Software-Defined Radio Receiver Architecture and RF-Analog Front-End Circuits

Authors : Rahim Bagheri, Ahmad Mirzaei, Saeed Chehrazi, Asad A. Abidi

Published in: Digitally-Assisted Analog and RF CMOS Circuit Design for Software-Defined Radio

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless bands and services are proliferating across the world. Every six months approximately, a new use for wireless appears, often leading to a new standard. Manufacturers of mobile handsets have a hard time keeping up, because the end user wants to access an increasing number of services from a single handset, and have it adapt to global roaming. In the face of this proliferation a universal software-defined radio (SDR) which can communicate over all bands and standards is in high demand. This chapter covers SDR receievrs (SDR-RX). First an overview of prior SDR receiver (SDR-RX) developments is presented. Then a novel architecture for low power SDR-RX, partly evolved from prior SDR works, is described. A CMOS prototype implementation which covers the 0.5 to 6 GHz spectrum and can tune to a wide range of narrowband and wideband modulations is presented. Main circuit blocks of this SDR-RX including the programmable anti-aliasing analog filter, wideband LNA and high linearity harmonic-rejection mixer are presented. Finally the areas where further performance improvement is needed are highlighted. Due to high flexibility and close similarity to the tried and true narrowband receivers, it is foreseeable that this architecture can yield itself to be widely used in future low power SDR-RX products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Accompanied by RF preselect filter, such RF samplers have been successfully implemented for fixed frequency narrowband receivers [17].
 
2
Channel of interest after downconversion lies at DC.
 
Literature
1.
go back to reference J. Mitola, “The Software Radio Architecture,” IEEE Communications Mag., vol. 33, no. 5, pp. 26–38, 1995.CrossRef J. Mitola, “The Software Radio Architecture,” IEEE Communications Mag., vol. 33, no. 5, pp. 26–38, 1995.CrossRef
2.
go back to reference T. Hentschel and G. Fettweis, “The Digital Front-End: Bridge between RF and Baseband Processing,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 151–198, 2002. T. Hentschel and G. Fettweis, “The Digital Front-End: Bridge between RF and Baseband Processing,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 151–198, 2002.
3.
go back to reference T. Hentschel, M. Henker, and G. Fettweis, “The Digital Front-End of Software Radio Terminals,” IEEE Communications Mag., vol. 6, pp. 40–46, 1999.CrossRef T. Hentschel, M. Henker, and G. Fettweis, “The Digital Front-End of Software Radio Terminals,” IEEE Communications Mag., vol. 6, pp. 40–46, 1999.CrossRef
4.
go back to reference K. Madani and et al, “Configurable Radio with Advanced Software Techniques (CAST)-Initial Concepts,” IST Mobile Communications Summit, Galway, Ireland, October, 2000. K. Madani and et al, “Configurable Radio with Advanced Software Techniques (CAST)-Initial Concepts,” IST Mobile Communications Summit, Galway, Ireland, October, 2000.
5.
go back to reference S. Colsell and et al, “A Comparative Study of Reconfigurable Digital and Analog Technologies for Future Mobile Communication Systems,” IEE 3G2001, London, March, 2001. S. Colsell and et al, “A Comparative Study of Reconfigurable Digital and Analog Technologies for Future Mobile Communication Systems,” IEE 3G2001, London, March, 2001.
6.
go back to reference D. Lund and et al, “A New Development System for Reconfigurable Digital Signal Processing,” IEE 3G, 2000. D. Lund and et al, “A New Development System for Reconfigurable Digital Signal Processing,” IEE 3G, 2000.
7.
go back to reference ——, “Characterising Software Control of the Physical Reconfigurable Radio Subsystems,” 1st mobile summit, Barcelona, Spain, September, 2001. ——, “Characterising Software Control of the Physical Reconfigurable Radio Subsystems,” 1st mobile summit, Barcelona, Spain, September, 2001.
8.
go back to reference P. Master and B. Plunkett, “Adaptive Computing IC Technology for 3G Software-Defined Mobile Devices,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 257–289, 2002. P. Master and B. Plunkett, “Adaptive Computing IC Technology for 3G Software-Defined Mobile Devices,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 257–289, 2002.
9.
go back to reference K. Moessner, “Protocols and Network Aspects of SDR,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 339–365, 2002. K. Moessner, “Protocols and Network Aspects of SDR,” in Software Defined Radio: Enabling Technologies, W. Tuttlebee, Ed. Chichester, UK: Wiley, pp. 339–365, 2002.
10.
go back to reference A. Abidi, “The Path to the Software-Defined Radio Receiver,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 954–966, 2007.CrossRef A. Abidi, “The Path to the Software-Defined Radio Receiver,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 954–966, 2007.CrossRef
11.
go back to reference N. C. Davies, “A High Performance HF Software Radio,” Eighth Intl. Conf. on HF Radio Systems and Techniques, pp. 249–256, 2000. N. C. Davies, “A High Performance HF Software Radio,” Eighth Intl. Conf. on HF Radio Systems and Techniques, pp. 249–256, 2000.
12.
go back to reference R. Bagheri, “An 800-MHz to 6-GHz CMOS Software-Defined-Radio Receiver for Mobile Terminals,” Ph.D. dissertation, University of California, Los Angeles, 2007. R. Bagheri, “An 800-MHz to 6-GHz CMOS Software-Defined-Radio Receiver for Mobile Terminals,” Ph.D. dissertation, University of California, Los Angeles, 2007.
13.
go back to reference R. H. Walden, “Analog-to-Digital Converter Survey and Analysis,” IEEE Journal of Selected Areas in Communications, vol. 17, no. 5, pp. 539–550, 1999.CrossRef R. H. Walden, “Analog-to-Digital Converter Survey and Analysis,” IEEE Journal of Selected Areas in Communications, vol. 17, no. 5, pp. 539–550, 1999.CrossRef
14.
go back to reference T. K. H. Yoshida, S. Otaka and H. Tsurumi, “A Software Defined Radio Receiver Using the Direct Conversion Principle: Implementation and Evaluation,” IEEE Intl. Symp. Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 1044–1048, 2000. T. K. H. Yoshida, S. Otaka and H. Tsurumi, “A Software Defined Radio Receiver Using the Direct Conversion Principle: Implementation and Evaluation,” IEEE Intl. Symp. Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 1044–1048, 2000.
15.
go back to reference A. A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, 1995.CrossRef A. A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, 1995.CrossRef
16.
go back to reference Y. S. Poberezhskiy, “Digital Radio Receivers (in Russian),” Moscow, Russia: Radio and Communications, 1987. Y. S. Poberezhskiy, “Digital Radio Receivers (in Russian),” Moscow, Russia: Radio and Communications, 1987.
17.
go back to reference K. Muhammad and et al, “A Discrete Time Quad-Band GSM/GPRS Receiver in a 90nm Digital CMOS Process,” IEEE Custom Integrated Circuits Conference, pp. 804–807, 2005. K. Muhammad and et al, “A Discrete Time Quad-Band GSM/GPRS Receiver in a 90nm Digital CMOS Process,” IEEE Custom Integrated Circuits Conference, pp. 804–807, 2005.
18.
go back to reference J. Yuan, “A Charge Sampling Mixer with Embedded Filter Function for Wireless Applications,” In 2nd Intl. Conf. on Microwave and Milimeter Wave Technology, Beijing, China, pp. 315–318, 2000. J. Yuan, “A Charge Sampling Mixer with Embedded Filter Function for Wireless Applications,” In 2nd Intl. Conf. on Microwave and Milimeter Wave Technology, Beijing, China, pp. 315–318, 2000.
19.
go back to reference A. Mirzaei, S. Chehrazi, R. Bagheri, and A. A. Abidi, “Analysis of First-Order Anti-Aliasing Integration Sampler,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 10, pp. 2994–3005, 2008.MathSciNetCrossRef A. Mirzaei, S. Chehrazi, R. Bagheri, and A. A. Abidi, “Analysis of First-Order Anti-Aliasing Integration Sampler,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 10, pp. 2994–3005, 2008.MathSciNetCrossRef
20.
go back to reference B. Razavi, RF Microelectronics, 2nd ed. Prentice Hall, 1998. B. Razavi, RF Microelectronics, 2nd ed. Prentice Hall, 1998.
21.
go back to reference A. Mirzaei, “Clock Programmable IF Circuits for CMOS Software Defined Radio Receiver and Precise Quadrature Oscillators,” Ph.D. dissertation, University of California, Los Angeles, 2006. A. Mirzaei, “Clock Programmable IF Circuits for CMOS Software Defined Radio Receiver and Precise Quadrature Oscillators,” Ph.D. dissertation, University of California, Los Angeles, 2006.
22.
go back to reference B. M. Ballweber, R. Gupta, and D. J. Allstot, “A Fully Integrated 0.5–5.5-GHz CMOS Distributed Amplifier,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, p. 231–239, 2000. B. M. Ballweber, R. Gupta, and D. J. Allstot, “A Fully Integrated 0.5–5.5-GHz CMOS Distributed Amplifier,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, p. 231–239, 2000.
23.
go back to reference R. C. Liu, K.-L. Deng, and H.Wang, “A 0.622 GHz Broadband CMOS Distributed Amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., p. 103–106, 2003. R. C. Liu, K.-L. Deng, and H.Wang, “A 0.622 GHz Broadband CMOS Distributed Amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., p. 103–106, 2003.
24.
go back to reference F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, p. 275–282, 2004.CrossRef F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, p. 275–282, 2004.CrossRef
25.
go back to reference R. Bagheri, A. Mirzaei, S. Chehrazi, E. Heidari, M. Lee, M. Mikhemar, W. Tang, and A. Abidi, “An 800-MHz6-GHz Software-Defined Wireless Receiver in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2860–2876, 2006.CrossRef R. Bagheri, A. Mirzaei, S. Chehrazi, E. Heidari, M. Lee, M. Mikhemar, W. Tang, and A. Abidi, “An 800-MHz6-GHz Software-Defined Wireless Receiver in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2860–2876, 2006.CrossRef
26.
go back to reference H. Darabi and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15–25, 2000.CrossRef H. Darabi and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15–25, 2000.CrossRef
27.
go back to reference E. Sacchi, I. Bietti, S. Erba, L. Tee, P. Vilmercati, and R. Castello, “A 15 mW, 70 kHz 1/f Corner Direct Conversion CMOS Receiver,” IEEE Custom Integrated Circuits Conference, pp. 459–462, 2003. E. Sacchi, I. Bietti, S. Erba, L. Tee, P. Vilmercati, and R. Castello, “A 15 mW, 70 kHz 1/f Corner Direct Conversion CMOS Receiver,” IEEE Custom Integrated Circuits Conference, pp. 459–462, 2003.
28.
go back to reference M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, “A 72-mW CMOS 802.11a Direct Conversion Front-End With 3.5-dB NF and 200-kHz 1/f Noise Corner,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 970–977, 2005. M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, “A 72-mW CMOS 802.11a Direct Conversion Front-End With 3.5-dB NF and 200-kHz 1/f Noise Corner,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 970–977, 2005.
29.
go back to reference J. A. Weldon, “A 1.75 GHz highly-integrated narrowband CMOS transmitter with harmonic-rejection mixers,” IEEE ISSCC 2001 Dig. Tech. Papers, pp. 160–161, 2001. J. A. Weldon, “A 1.75 GHz highly-integrated narrowband CMOS transmitter with harmonic-rejection mixers,” IEEE ISSCC 2001 Dig. Tech. Papers, pp. 160–161, 2001.
Metadata
Title
Software-Defined Radio Receiver Architecture and RF-Analog Front-End Circuits
Authors
Rahim Bagheri
Ahmad Mirzaei
Saeed Chehrazi
Asad A. Abidi
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-8514-9_4