Skip to main content
Top

2019 | OriginalPaper | Chapter

Solar Ejector Cooling Technologies

Authors : Xiaoli Ma, Wei Zhang, Fenglei Li, S. B. Riffat

Published in: Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using low-grade thermal energy instead of electricity to operate a refrigeration system can have important environmental benefits, especially when it is powered by a renewable energy source. Ejector refrigeration is one of the most promising technologies because of its relative simplicity and low capital cost when compared to an absorption refrigerator. An ejector heat pump is a heat-operated cycle capable of utilizing solar energy, waste energy, natural gas or hybrid sources (e.g. solar/gas). An ejector system basically consists of a generator, evaporator, condenser, ejector, expansion valve, and a pump. The ejector system has very few moving parts and so is simple in design. In addition, it has the potential of long life and, unlike vapour-compression systems, produces no noise or vibration. The system could be manufactured at relatively low cost, since inexpensive construction materials may be used. Although they have a relatively low coefficient of performance compared to air-conditioning systems using mechanical compressors, the ejector cooling technologies have attracted extensive attentions with ever-increasing awareness and pressures for protecting the environment and have achieved significant improvement in coefficient of performance as compared to other systems. The continuous developments in solar collector technology open the way to the effective utilization of solar energy to power the ejector systems and utilization of environmental friendly refrigerants is also the major concern. This chapter introduces the principle of the ejector, basic ejector cycle, solar-driven ejector system and its operating. The refrigerants, solar collectors, and PCM heat storage for solar ejector system applications are also introduced. A complete solar ejector air-conditioning system used in a building is presented in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gosney WB (1982) Principle of refrigeration. Cambridge University Press, Cambridge Gosney WB (1982) Principle of refrigeration. Cambridge University Press, Cambridge
2.
go back to reference Stoecker WF (1958) Steam-jet refrigeration. McGraw-Hill, Boston, MA Stoecker WF (1958) Steam-jet refrigeration. McGraw-Hill, Boston, MA
3.
go back to reference Abdulateef JM, Sopian K, Alghoul MA, Sulaiman MY (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13:1338–149CrossRef Abdulateef JM, Sopian K, Alghoul MA, Sulaiman MY (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13:1338–149CrossRef
4.
go back to reference Li F, Wu C, Wang X, Tian Q, Teo KL (2016) Sparsity-enhanced optimization for ejector performance prediction. Energy 113:25–34CrossRef Li F, Wu C, Wang X, Tian Q, Teo KL (2016) Sparsity-enhanced optimization for ejector performance prediction. Energy 113:25–34CrossRef
5.
go back to reference Gil B, Kasperski J (2014) Performance analysis of a solar-powered ejector air conditioning cycle with heavier hydrocarbons as refrigerants. Energy Procedia 57:2619–2628CrossRef Gil B, Kasperski J (2014) Performance analysis of a solar-powered ejector air conditioning cycle with heavier hydrocarbons as refrigerants. Energy Procedia 57:2619–2628CrossRef
6.
go back to reference Li F, Tian Q, Wu C, Wang X, Lee JM (2017) Ejector performance prediction at critical and subcritical operational modes. Appl Thermal Eng 115:444–454CrossRef Li F, Tian Q, Wu C, Wang X, Lee JM (2017) Ejector performance prediction at critical and subcritical operational modes. Appl Thermal Eng 115:444–454CrossRef
7.
go back to reference Bellos E, Tzivanidis C (2017) Optimum design of a solar ejector refrigeration system for various operating Scenarios. Energy Convers Manage 154:11–24CrossRef Bellos E, Tzivanidis C (2017) Optimum design of a solar ejector refrigeration system for various operating Scenarios. Energy Convers Manage 154:11–24CrossRef
8.
go back to reference Śmierciew K, Gagan J, Butrymowicz D, Karwacki J (2014) Experimental investigations of solar driven ejector air-conditioning system. Energy Build 80:260–267CrossRef Śmierciew K, Gagan J, Butrymowicz D, Karwacki J (2014) Experimental investigations of solar driven ejector air-conditioning system. Energy Build 80:260–267CrossRef
9.
go back to reference Dennis M, Cochrane T, Marina A (2015) A prescription for primary nozzle diameters for solar driven ejectors. Solar Energy 115:405–412CrossRef Dennis M, Cochrane T, Marina A (2015) A prescription for primary nozzle diameters for solar driven ejectors. Solar Energy 115:405–412CrossRef
10.
go back to reference Ma X, Zhang W, Omer SA, Riffat SB (2010) Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl Therm Eng 30(11–12):1320–1325CrossRef Ma X, Zhang W, Omer SA, Riffat SB (2010) Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl Therm Eng 30(11–12):1320–1325CrossRef
11.
go back to reference Zhang W, Ma X, Omer SA, Riffat SB (2012) Optimum selection of solar collectors for a solar-driven ejector air conditioning system by experimental and simulation study. Energy Convers Manage 63:106–111CrossRef Zhang W, Ma X, Omer SA, Riffat SB (2012) Optimum selection of solar collectors for a solar-driven ejector air conditioning system by experimental and simulation study. Energy Convers Manage 63:106–111CrossRef
12.
go back to reference Allouche Yosr, Bouden Chiheb, Riffat Saffa (2012) A solar-driven ejector refrigeration system for Mediterranean climate: experience improvement and new results performed. Energy Procedia 18:1115–1124CrossRef Allouche Yosr, Bouden Chiheb, Riffat Saffa (2012) A solar-driven ejector refrigeration system for Mediterranean climate: experience improvement and new results performed. Energy Procedia 18:1115–1124CrossRef
13.
go back to reference Allouche Y, Varga S, Bouden C, Oliveira AC (2017) Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl Energy 190:600–611CrossRef Allouche Y, Varga S, Bouden C, Oliveira AC (2017) Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl Energy 190:600–611CrossRef
14.
go back to reference Ma X, Omer SA, Riffat SB, Zhang W (2009) Investigation of energy transportation capability of a phase change slurry through a cold storage-cooling coil system. Int J Energy Res 33:999–1004CrossRef Ma X, Omer SA, Riffat SB, Zhang W (2009) Investigation of energy transportation capability of a phase change slurry through a cold storage-cooling coil system. Int J Energy Res 33:999–1004CrossRef
15.
go back to reference Liu J, Wang L, Jia L (2017) A predictive model for the performance of the ejector in refrigeration system. Energy Convers Manage 150:269–276CrossRef Liu J, Wang L, Jia L (2017) A predictive model for the performance of the ejector in refrigeration system. Energy Convers Manage 150:269–276CrossRef
16.
go back to reference Ma X, Zhang W, Omer SA, Riffat SB (2011) Performance testing of a novel ejector refrigerator for various controlled conditions. Int J Energy Res 35:1229–1235CrossRef Ma X, Zhang W, Omer SA, Riffat SB (2011) Performance testing of a novel ejector refrigerator for various controlled conditions. Int J Energy Res 35:1229–1235CrossRef
17.
go back to reference Varga S, Oliveira AC, Ma X, Omer SA, Zhang W, Riffat SB (2011) Experimental and numerical analysis of a variable area ratio steam ejector. Int J Refrig 34(7):1668–1675CrossRef Varga S, Oliveira AC, Ma X, Omer SA, Zhang W, Riffat SB (2011) Experimental and numerical analysis of a variable area ratio steam ejector. Int J Refrig 34(7):1668–1675CrossRef
18.
go back to reference Varga S, Oliveira AC, Diaconu B (2009) Numerical assessment of steam ejector efficiencies using CFD. Int J Refrig 32(6):1203–1211CrossRef Varga S, Oliveira AC, Diaconu B (2009) Numerical assessment of steam ejector efficiencies using CFD. Int J Refrig 32(6):1203–1211CrossRef
Metadata
Title
Solar Ejector Cooling Technologies
Authors
Xiaoli Ma
Wei Zhang
Fenglei Li
S. B. Riffat
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17283-1_8