Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

Solar Energy in Thermochemical Processing

Authors : Anton Meier, Aldo Steinfeld

Published in: Solar Thermal Energy

Publisher: Springer US

Excerpt

Aperture
Opening of a solar cavity receiver.
Carnot efficiency
Maximum efficiency for converting heat from a high-temperature thermal reservoir at T H into work in a cyclic process, and rejecting heat to a low-temperature thermal reservoir at T L, given by 1 − T L/T H.
CB (carbon black)
Important industrial raw material used as pigment and reinforcement in rubber and plastic products.
CPC (compound parabolic concentrator)
Nonimaging concentrating device that is usually positioned in tandem with the primary parabolic concentrating system to further augment the solar concentration ratio.
CSP (concentrating solar power)
CSP plants generate electricity by converting solar energy into high-temperature heat using various mirror configurations.
Direct normal solar irradiance
Power flux of direct solar irradiation on a surface perpendicular to the sun’s rays
Endothermic
Absorbs heat.
Exergy efficiency (for a solar thermochemical process)
The efficiency for converting solar energy into chemical energy, given by the ratio of the maximum work that may be extracted from a solar fuel to the solar energy input for producing such a fuel.
Exothermic
Rejects heat.
Fuel cell
A fuel cell is an electrochemical cell that converts a fuel into electricity. In the presence of an electrolyte, a fuel (e.g., hydrogen) and an oxidant (e.g., oxygen or air) react and generate an electric current.
PEM (polymer electrolyte membrane) fuel cell
PEM fuel cells also called proton exchange membrane fuel cells - deliver high-power density and offer the advantages of low weight and volume, compared with other fuel cells.
Quench
Rapid cooling, for example, of a high-temperature gas mixture to avoid recombination of products.
Solar cavity receiver
A well-insulated enclosure, with a small opening to let in concentrated solar energy, which approaches a blackbody absorber in its ability to capture solar energy.
Solar chemical heat pipe
Concept for storing and transporting solar energy using a reversible endothermic reaction.
Solar concentration ratio
Nondimensional ratio of the solar flux intensity (e.g., in “suns”) achieved after concentration to the normal insolation of incident beam.
Solar fuels
Fuels produced with solar energy.
Solar thermochemical process
Any endothermic process that uses concentrated solar energy as the source of high-temperature process heat.
Syngas
Synthesis gas (a mixture of primarily hydrogen and carbon monoxide), which serves as the building block for a wide variety of synthetic fuels including Fischer-Tropsch type chemicals, hydrogen, ammonia, and methanol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Steinfeld A, Meier A (2004) Solar fuels and materials. In: Cleveland C (ed) Encyclopedia of energy, vol 5. Elsevier, Amsterdam, pp 623–637 CrossRef Steinfeld A, Meier A (2004) Solar fuels and materials. In: Cleveland C (ed) Encyclopedia of energy, vol 5. Elsevier, Amsterdam, pp 623–637 CrossRef
2.
go back to reference IEA (2010) IEA technology roadmap – concentrating solar power. International Energy Agency, Paris IEA (2010) IEA technology roadmap – concentrating solar power. International Energy Agency, Paris
3.
go back to reference Haueter P, Seitz T, Steinfeld A (1999) A new high-flux solar furnace for high-temperature thermochemical research. J Sol Energy Eng 121:77–80 CrossRef Haueter P, Seitz T, Steinfeld A (1999) A new high-flux solar furnace for high-temperature thermochemical research. J Sol Energy Eng 121:77–80 CrossRef
4.
go back to reference Welford WT, Winston R (1989) High collection nonimaging optics. Academic, San Diego Welford WT, Winston R (1989) High collection nonimaging optics. Academic, San Diego
5.
go back to reference Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects, and technologies. J Sol Energy Eng 124(2):98–108 CrossRef Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects, and technologies. J Sol Energy Eng 124(2):98–108 CrossRef
6.
go back to reference Yogev A, Kribus A, Epstein M, Kogan A (1998) Solar tower reflector systems: a new approach for high-temperature solar plants. Int J Hydrog Energy 23:239–245 CrossRef Yogev A, Kribus A, Epstein M, Kogan A (1998) Solar tower reflector systems: a new approach for high-temperature solar plants. Int J Hydrog Energy 23:239–245 CrossRef
7.
go back to reference Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050–1056 CrossRef Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050–1056 CrossRef
8.
go back to reference Steinfeld A, Schubnell M (1993) Optimum aperture size and operating temperature of a solar cavity-receiver. Sol Energy 50:19–25 CrossRef Steinfeld A, Schubnell M (1993) Optimum aperture size and operating temperature of a solar cavity-receiver. Sol Energy 50:19–25 CrossRef
9.
go back to reference JANAF Thermochemical Tables (1985) National bureau of standards, 3rd edn. National Bureau of Standards, Washington, DC JANAF Thermochemical Tables (1985) National bureau of standards, 3rd edn. National Bureau of Standards, Washington, DC
10.
go back to reference Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrog Energy 23:767–774 CrossRef Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrog Energy 23:767–774 CrossRef
11.
go back to reference Schunk LO, Steinfeld A (2009) Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800-2100 K range. AICHE J 55:1497–1504 CrossRef Schunk LO, Steinfeld A (2009) Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800-2100 K range. AICHE J 55:1497–1504 CrossRef
12.
go back to reference Palumbo R, Lédé J, Boutin O, Elorza-Ricart E, Steinfeld A, Möller S, Weidenkaff A, Fletcher EA, Bielicki J (1998) The production of Zn from ZnO in a single step high temperature solar decomposition process I. The scientific framework for the process. Chem Eng Sci 53:2503–2518 CrossRef Palumbo R, Lédé J, Boutin O, Elorza-Ricart E, Steinfeld A, Möller S, Weidenkaff A, Fletcher EA, Bielicki J (1998) The production of Zn from ZnO in a single step high temperature solar decomposition process I. The scientific framework for the process. Chem Eng Sci 53:2503–2518 CrossRef
13.
go back to reference Weidenkaff A, Reller AW, Wokaun A, Steinfeld A (2000) Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 359:69–75 CrossRef Weidenkaff A, Reller AW, Wokaun A, Steinfeld A (2000) Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 359:69–75 CrossRef
14.
go back to reference Möller S, Palumbo R (2001) Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K. Chem Eng Sci 56:4505–4515 CrossRef Möller S, Palumbo R (2001) Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K. Chem Eng Sci 56:4505–4515 CrossRef
15.
go back to reference Perkins C, Lichty P, Weimer AW (2007) Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci 62:5952–5962 CrossRef Perkins C, Lichty P, Weimer AW (2007) Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci 62:5952–5962 CrossRef
16.
go back to reference Perkins C, Lichty PR, Weimer A (2008) Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrog Energy 33:499–510 CrossRef Perkins C, Lichty PR, Weimer A (2008) Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrog Energy 33:499–510 CrossRef
17.
go back to reference Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide – solar chemical reactor design. Sol Energy 67:161–167 CrossRef Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide – solar chemical reactor design. Sol Energy 67:161–167 CrossRef
18.
go back to reference Alxneit I (2008) Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench – model calculations. Sol Energy 82:959–964 CrossRef Alxneit I (2008) Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench – model calculations. Sol Energy 82:959–964 CrossRef
19.
go back to reference Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 15. Academic, San Diego, pp 237–256 Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 15. Academic, San Diego, pp 237–256
20.
go back to reference Fletcher EA (1999) Solarthermal and solar quasi-electrolytic processing and separations: Zinc from Zinc Oxide as an example. Ind Eng Chem Res 38:2275–2282 CrossRef Fletcher EA (1999) Solarthermal and solar quasi-electrolytic processing and separations: Zinc from Zinc Oxide as an example. Ind Eng Chem Res 38:2275–2282 CrossRef
21.
go back to reference Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272 CrossRef Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272 CrossRef
22.
go back to reference Palumbo RD, Fletcher EA (1988) High temperature solar electro-thermal processing III. Zinc from zinc oxide at 1200-1675 K using a non-consumable anode. Energy 13:319–332 CrossRef Palumbo RD, Fletcher EA (1988) High temperature solar electro-thermal processing III. Zinc from zinc oxide at 1200-1675 K using a non-consumable anode. Energy 13:319–332 CrossRef
23.
go back to reference Parks DJ, Scholl KL, Fletcher EA (1988) A study of the use of Y 2O 3 doped ZrO 2 membranes for solar electrothermal and solar thermal separations. Energy 13:121–136 CrossRef Parks DJ, Scholl KL, Fletcher EA (1988) A study of the use of Y 2O 3 doped ZrO 2 membranes for solar electrothermal and solar thermal separations. Energy 13:121–136 CrossRef
24.
go back to reference Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78:603–615 CrossRef Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78:603–615 CrossRef
25.
go back to reference Venstrom L, Krueger K, Leonard N, Tomlinson B, Duncan S, Palumbo RD (2009) Solar thermal electrolytic process for the production of Zn from ZnO: an ionic conductivity study. J Sol Energy Eng 131:031005–031001 CrossRef Venstrom L, Krueger K, Leonard N, Tomlinson B, Duncan S, Palumbo RD (2009) Solar thermal electrolytic process for the production of Zn from ZnO: an ionic conductivity study. J Sol Energy Eng 131:031005–031001 CrossRef
26.
go back to reference Murray JP, Steinfeld A, Fletcher EA (1995) Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. Energy 20:695–704 CrossRef Murray JP, Steinfeld A, Fletcher EA (1995) Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. Energy 20:695–704 CrossRef
27.
go back to reference Steinfeld A, Fletcher EA (1991) Theoretical and experimental investigation of the carbothermic reduction of Fe 2O 3 using solar energy. Energy 16:1011–1019 CrossRef Steinfeld A, Fletcher EA (1991) Theoretical and experimental investigation of the carbothermic reduction of Fe 2O 3 using solar energy. Energy 16:1011–1019 CrossRef
28.
go back to reference Steinfeld A, Kuhn P, Karni J (1993) High temperature solar thermochemistry: production of iron and synthesis gas by Fe 3O 4-reduction with methane. Energy 18:239–249 CrossRef Steinfeld A, Kuhn P, Karni J (1993) High temperature solar thermochemistry: production of iron and synthesis gas by Fe 3O 4-reduction with methane. Energy 18:239–249 CrossRef
29.
go back to reference Steinfeld A, Frei A, Kuhn P, Wuillemin D (1995) Solarthermal production of zinc and syngas via combined ZnO-reduction and CH 4-reforming processes. Int J Hydrog Energy 20:793–804 CrossRef Steinfeld A, Frei A, Kuhn P, Wuillemin D (1995) Solarthermal production of zinc and syngas via combined ZnO-reduction and CH 4-reforming processes. Int J Hydrog Energy 20:793–804 CrossRef
30.
go back to reference Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the co-production of zinc and synthesis gas. Energy 23:803–814 CrossRef Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the co-production of zinc and synthesis gas. Energy 23:803–814 CrossRef
31.
go back to reference Kräupl S, Steinfeld A (2001) Experimental investigation of a vortex-flow solar chemical reactor for the combined ZnO-reduction and CH 4-reforming. J Sol Energy Eng 123:237–243 CrossRef Kräupl S, Steinfeld A (2001) Experimental investigation of a vortex-flow solar chemical reactor for the combined ZnO-reduction and CH 4-reforming. J Sol Energy Eng 123:237–243 CrossRef
32.
go back to reference Kräupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126 CrossRef Kräupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126 CrossRef
33.
go back to reference Wieckert C, Steinfeld A (2002) Solar thermal reduction of ZnO using CH 4:ZnO and C:ZnO molar ratios less than 1. J Sol Energy Eng 124:55–62 CrossRef Wieckert C, Steinfeld A (2002) Solar thermal reduction of ZnO using CH 4:ZnO and C:ZnO molar ratios less than 1. J Sol Energy Eng 124:55–62 CrossRef
34.
go back to reference Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor. J Sol Energy Eng 126:633–637 CrossRef Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor. J Sol Energy Eng 126:633–637 CrossRef
35.
go back to reference Osinga T, Olalde G, Steinfeld A (2004) The solar carbothermal reduction of ZnO - shrinking packed-bed reactor modeling and experimental validation. Ind Eng Chem Res 43:7981–7988 CrossRef Osinga T, Olalde G, Steinfeld A (2004) The solar carbothermal reduction of ZnO - shrinking packed-bed reactor modeling and experimental validation. Ind Eng Chem Res 43:7981–7988 CrossRef
36.
go back to reference Wieckert C, Frommherz U, Kräupl S, Guillot E, Olalde G, Epstein M, Santén S, Osinga T, Steinfeld A (2007) A 300 kW solar chemical pilot plant for the carbothermic production of zinc. J Sol Energy Eng 129(2):190–196 CrossRef Wieckert C, Frommherz U, Kräupl S, Guillot E, Olalde G, Epstein M, Santén S, Osinga T, Steinfeld A (2007) A 300 kW solar chemical pilot plant for the carbothermic production of zinc. J Sol Energy Eng 129(2):190–196 CrossRef
37.
go back to reference Epstein M, Olalde G, Santén S, Steinfeld A, Wieckert C (2008) Towards the industrial solar carbothermal production of zinc. J Sol Energy Eng 130(1):014505 CrossRef Epstein M, Olalde G, Santén S, Steinfeld A, Wieckert C (2008) Towards the industrial solar carbothermal production of zinc. J Sol Energy Eng 130(1):014505 CrossRef
38.
go back to reference Meier A, Steinfeld A (2010) Solar thermochemical production of fuels. Adv Sci Technol 74:303–312 CrossRef Meier A, Steinfeld A (2010) Solar thermochemical production of fuels. Adv Sci Technol 74:303–312 CrossRef
39.
go back to reference Jensen SH, Larsen PJ, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrog Energy 32(15):3253–3257 CrossRef Jensen SH, Larsen PJ, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrog Energy 32(15):3253–3257 CrossRef
40.
go back to reference Kogan A (1998) Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study. Int J Hydrog Energy 23:89–98 CrossRef Kogan A (1998) Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study. Int J Hydrog Energy 23:89–98 CrossRef
41.
go back to reference Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrog Energy 5:527–534 CrossRef Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrog Energy 5:527–534 CrossRef
42.
go back to reference Diver RB, Pederson S, Kappauf T, Fletcher EA (1983) Hydrogen and oxygen from water – VI. Quenching the effluent from a solar furnace. Energy 12:947–955 CrossRef Diver RB, Pederson S, Kappauf T, Fletcher EA (1983) Hydrogen and oxygen from water – VI. Quenching the effluent from a solar furnace. Energy 12:947–955 CrossRef
43.
go back to reference Lédé J, Villermaux J, Ouzane R, Hossain MA, Ouahes R (1987) Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface. Int J Hydrog Energy 12:3–11 CrossRef Lédé J, Villermaux J, Ouzane R, Hossain MA, Ouahes R (1987) Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface. Int J Hydrog Energy 12:3–11 CrossRef
44.
go back to reference Le Duigou A, Borgard JM, Larousse B, Doizi D, Allen R, Ewan B et al (2007) HYTHEC: an EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. Int J Hydrog Energy 32:1516–1529 CrossRef Le Duigou A, Borgard JM, Larousse B, Doizi D, Allen R, Ewan B et al (2007) HYTHEC: an EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. Int J Hydrog Energy 32:1516–1529 CrossRef
45.
go back to reference Kolb GJ, Diver RB, Siegel N (2007) Central-station solar hydrogen power plant. J Sol Energy Eng 129:179–183 CrossRef Kolb GJ, Diver RB, Siegel N (2007) Central-station solar hydrogen power plant. J Sol Energy Eng 129:179–183 CrossRef
46.
go back to reference Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AICHE J 55:286–293 CrossRef Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AICHE J 55:286–293 CrossRef
47.
go back to reference Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822 CrossRef Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822 CrossRef
48.
go back to reference Kodama T (2003) High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energ Combust 29:567–597 CrossRef Kodama T (2003) High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energ Combust 29:567–597 CrossRef
49.
go back to reference Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Coordin Chem Rev 107:4048–4077 CrossRef Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Coordin Chem Rev 107:4048–4077 CrossRef
50.
go back to reference Fletcher EA (2001) Solarthermal processing: a review. J Sol Energy Eng 123:63–74 CrossRef Fletcher EA (2001) Solarthermal processing: a review. J Sol Energy Eng 123:63–74 CrossRef
51.
go back to reference Inoue M, Hasegawa N, Uehara R, Gokon N, Kaneko H, Tamaura Y (2004) Solar hydrogen generation with H 2O/ZnO/MnFe 2O 4 system. Sol Energy 76:309–315 CrossRef Inoue M, Hasegawa N, Uehara R, Gokon N, Kaneko H, Tamaura Y (2004) Solar hydrogen generation with H 2O/ZnO/MnFe 2O 4 system. Sol Energy 76:309–315 CrossRef
52.
go back to reference Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728 CrossRef Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728 CrossRef
53.
go back to reference Chueh WC, Haile SM (2009) Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H 2O and CO 2. ChemSusChem 2:735–739 CrossRef Chueh WC, Haile SM (2009) Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H 2O and CO 2. ChemSusChem 2:735–739 CrossRef
54.
go back to reference Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475 CrossRef Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475 CrossRef
55.
go back to reference Sibieude F, Ducarroir M, Tofighi A, Ambriz J (1982) High- temperature experiments with a solar furnace: the decomposition of Fe 3O 4, Mn 3O 4, CdO. Int J Hydrog Energy 7:79–88 CrossRef Sibieude F, Ducarroir M, Tofighi A, Ambriz J (1982) High- temperature experiments with a solar furnace: the decomposition of Fe 3O 4, Mn 3O 4, CdO. Int J Hydrog Energy 7:79–88 CrossRef
56.
go back to reference Bilgen E, Ducarroir M, Foex M, Sibieude F, Trombe F (1977) Use of solar energy for direct and two -step water decomposition cycles. Int J Hydrog Energy 2:251–257 CrossRef Bilgen E, Ducarroir M, Foex M, Sibieude F, Trombe F (1977) Use of solar energy for direct and two -step water decomposition cycles. Int J Hydrog Energy 2:251–257 CrossRef
57.
go back to reference Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27:611–619 CrossRef Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27:611–619 CrossRef
58.
go back to reference Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrog Energy 29:1587–1599 CrossRef Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrog Energy 29:1587–1599 CrossRef
59.
go back to reference Loutzenhiser PG, Meier A, Steinfeld A (2010) Review of the two-step H 2O/CO 2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3:4922–4938 CrossRef Loutzenhiser PG, Meier A, Steinfeld A (2010) Review of the two-step H 2O/CO 2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3:4922–4938 CrossRef
60.
go back to reference Schunk L, Haeberling P, Wepf S, Wuillemin D, Meier A, Steinfeld A (2008) A solar receiver-reactor for the thermal dissociation of zinc oxide. J Sol Energy Eng 130:021009 CrossRef Schunk L, Haeberling P, Wepf S, Wuillemin D, Meier A, Steinfeld A (2008) A solar receiver-reactor for the thermal dissociation of zinc oxide. J Sol Energy Eng 130:021009 CrossRef
61.
go back to reference Müller R, Steinfeld A (2008) H 2O-splitting thermochemical cycle based on ZnO-Zn-redox - Quenching the effluents from the ZnO dissociation. Chem Eng Sci 63:217–227 CrossRef Müller R, Steinfeld A (2008) H 2O-splitting thermochemical cycle based on ZnO-Zn-redox - Quenching the effluents from the ZnO dissociation. Chem Eng Sci 63:217–227 CrossRef
62.
go back to reference Abanades S, Charvin P, Flamant G (2007) Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides – Case study of zinc oxide dissociation. Chem Eng Sci 62:6323–6333 CrossRef Abanades S, Charvin P, Flamant G (2007) Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides – Case study of zinc oxide dissociation. Chem Eng Sci 62:6323–6333 CrossRef
63.
go back to reference Dombrovsky LA, Lipiński W, Steinfeld A (2007) A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. J Quant Spectrosc Radiat Transf 103:601–610 CrossRef Dombrovsky LA, Lipiński W, Steinfeld A (2007) A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. J Quant Spectrosc Radiat Transf 103:601–610 CrossRef
64.
go back to reference Müller R, Steinfeld A (2007) Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Sol Energy 81:1285–1294 CrossRef Müller R, Steinfeld A (2007) Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Sol Energy 81:1285–1294 CrossRef
65.
go back to reference Müller R, Lipiński W, Steinfeld A (2008) Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl Therm Eng 28:524–531 CrossRef Müller R, Lipiński W, Steinfeld A (2008) Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl Therm Eng 28:524–531 CrossRef
66.
go back to reference Dombrovsky LA, Schunk L, Lipiński W, Steinfeld A (2009) An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. Int J Heat Mass Transf 52:2444–2452 MATHCrossRef Dombrovsky LA, Schunk L, Lipiński W, Steinfeld A (2009) An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. Int J Heat Mass Transf 52:2444–2452 MATHCrossRef
67.
go back to reference Schunk LO, Lipiński W, Steinfeld A (2009) Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation. AICHE J 55:1659–1666 CrossRef Schunk LO, Lipiński W, Steinfeld A (2009) Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation. AICHE J 55:1659–1666 CrossRef
68.
go back to reference Schunk LO, Lipiński W, Steinfeld A (2009) Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW. Chem Eng J 150:502–508 CrossRef Schunk LO, Lipiński W, Steinfeld A (2009) Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW. Chem Eng J 150:502–508 CrossRef
69.
go back to reference Weiss RJ, Ly HC, Wegner K, Pratsinis SE, Steinfeld A (2005) H 2 production by Zn hydrolysis in a hot-wall aerosol reactor. AICHE J 51:1966–1970 CrossRef Weiss RJ, Ly HC, Wegner K, Pratsinis SE, Steinfeld A (2005) H 2 production by Zn hydrolysis in a hot-wall aerosol reactor. AICHE J 51:1966–1970 CrossRef
70.
go back to reference Wegner K, Ly HC, Weiss RJ, Pratsinis SE, Steinfeld A (2006) In situ formation and hydrolysis of Zn nanoparticles for H 2 production by the two-step ZnO/Zn water-splitting thermochemical cycle. Int J Hydrog Energy 31:55–61 CrossRef Wegner K, Ly HC, Weiss RJ, Pratsinis SE, Steinfeld A (2006) In situ formation and hydrolysis of Zn nanoparticles for H 2 production by the two-step ZnO/Zn water-splitting thermochemical cycle. Int J Hydrog Energy 31:55–61 CrossRef
71.
go back to reference Ernst FO, Tricoli A, Pratsinis SE, Steinfeld A (2006) Co-synthesis of H 2 and ZnO by in-situ Zn aerosol formation and hydrolysis. AICHE J 52:3297–3303 CrossRef Ernst FO, Tricoli A, Pratsinis SE, Steinfeld A (2006) Co-synthesis of H 2 and ZnO by in-situ Zn aerosol formation and hydrolysis. AICHE J 52:3297–3303 CrossRef
72.
go back to reference Funke HH, Diaz H, Liang X, Carney CS, Weimer AW, Lib P (2008) Hydrogen generation by hydrolysis of zinc powder aerosol. Int J Hydrog Energy 33:1127–1134 CrossRef Funke HH, Diaz H, Liang X, Carney CS, Weimer AW, Lib P (2008) Hydrogen generation by hydrolysis of zinc powder aerosol. Int J Hydrog Energy 33:1127–1134 CrossRef
73.
go back to reference Melchior T, Piatkowski N, Steinfeld A (2009) H 2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. Chem Eng Sci 64:1095–1101 CrossRef Melchior T, Piatkowski N, Steinfeld A (2009) H 2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. Chem Eng Sci 64:1095–1101 CrossRef
74.
go back to reference Abu Hamed T, Venstrom L, Alshare A, Brülhart M, Davidson JH (2009) Study of a quench device for simultaneous synthesis and hydrolysis of Zn nanoparticles: modeling and experiments. J Sol Energy Eng 131:031018-1-9 CrossRef Abu Hamed T, Venstrom L, Alshare A, Brülhart M, Davidson JH (2009) Study of a quench device for simultaneous synthesis and hydrolysis of Zn nanoparticles: modeling and experiments. J Sol Energy Eng 131:031018-1-9 CrossRef
75.
go back to reference Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO 2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int J Hydrog Energy 33:6021–6030 CrossRef Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO 2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int J Hydrog Energy 33:6021–6030 CrossRef
76.
go back to reference Charvin P, Abanades S, Bêche E, Lemont F, Flamant G (2009) Hydrogen production from mixed cerium oxides via three-step water-splitting cycles. Solid State Ionics 180:1003–1010 CrossRef Charvin P, Abanades S, Bêche E, Lemont F, Flamant G (2009) Hydrogen production from mixed cerium oxides via three-step water-splitting cycles. Solid State Ionics 180:1003–1010 CrossRef
77.
go back to reference Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO 2 and H 2O using nonstoichiometric ceria. Science 330:1797–1801 CrossRef Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO 2 and H 2O using nonstoichiometric ceria. Science 330:1797–1801 CrossRef
78.
go back to reference Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrog Energy 31:2063–2075 CrossRef Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrog Energy 31:2063–2075 CrossRef
79.
go back to reference Kodama T, Nakamuro Y, Mizuno T (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128:3–7 CrossRef Kodama T, Nakamuro Y, Mizuno T (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128:3–7 CrossRef
80.
go back to reference Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y (2007) Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuel 21:2287–2293 CrossRef Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y (2007) Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuel 21:2287–2293 CrossRef
81.
go back to reference Diver RB, Miller JE, Allendorf MD, Siegel N, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:041001–041001 CrossRef Diver RB, Miller JE, Allendorf MD, Siegel N, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:041001–041001 CrossRef
82.
go back to reference Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N, Dersch J, Schmitz M, Sattler C (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545 CrossRef Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N, Dersch J, Schmitz M, Sattler C (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545 CrossRef
83.
go back to reference Meier A, Sattler C (2010) Solar fuels from concentrated sunlight. IEA SolarPACES Implementing Agreement, Tabernas. http://​www.​solarpaces.​org/​Library/​docs/​Solar_​Fuels.​pdf Meier A, Sattler C (2010) Solar fuels from concentrated sunlight. IEA SolarPACES Implementing Agreement, Tabernas. http://​www.​solarpaces.​org/​Library/​docs/​Solar_​Fuels.​pdf
84.
go back to reference Gálvez E, Loutzenhiser P, Hischier I, Steinfeld A (2008) CO 2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions: thermodynamic analysis. Energy Fuel 22:3544–3550 CrossRef Gálvez E, Loutzenhiser P, Hischier I, Steinfeld A (2008) CO 2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions: thermodynamic analysis. Energy Fuel 22:3544–3550 CrossRef
85.
go back to reference Loutzenhiser PG, Gálvez ME, Hischier I, Stamatiou A, Frei A, Steinfeld A (2009) CO 2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions II: kinetic analysis. Energy Fuel 23:2832–2839 CrossRef Loutzenhiser PG, Gálvez ME, Hischier I, Stamatiou A, Frei A, Steinfeld A (2009) CO 2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions II: kinetic analysis. Energy Fuel 23:2832–2839 CrossRef
86.
go back to reference Nikulshina V, Hirsch D, Mazzotti M, Steinfeld A (2006) CO 2 capture from air and co-production of H 2 via the Ca(OH) 2-CaCO 3 cycle using concentrated solar power - thermodynamic analysis. Energy 31:1379–1389 CrossRef Nikulshina V, Hirsch D, Mazzotti M, Steinfeld A (2006) CO 2 capture from air and co-production of H 2 via the Ca(OH) 2-CaCO 3 cycle using concentrated solar power - thermodynamic analysis. Energy 31:1379–1389 CrossRef
87.
go back to reference Nikulshina V, Steinfeld A (2009) CO 2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor – effect of temperature and water vapor concentration. Chem Eng J 155:867–873 CrossRef Nikulshina V, Steinfeld A (2009) CO 2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor – effect of temperature and water vapor concentration. Chem Eng J 155:867–873 CrossRef
88.
go back to reference Nikulshina V, Gebald C, Steinfeld A (2009) CO 2 capture from atmospheric air via consecutive CaO-carbonation and CaCO 3-calcination cycles in a fluidized-bed solar reactor. Chem Eng J 146:244–248 CrossRef Nikulshina V, Gebald C, Steinfeld A (2009) CO 2 capture from atmospheric air via consecutive CaO-carbonation and CaCO 3-calcination cycles in a fluidized-bed solar reactor. Chem Eng J 146:244–248 CrossRef
89.
go back to reference Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H 2O/CO 2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions. Chem Mater 22:851–859 CrossRef Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H 2O/CO 2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe 3O 4 redox reactions. Chem Mater 22:851–859 CrossRef
90.
go back to reference Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production from H 2O and CO 2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe 3O 4 redox reactions: kinetic analysis. Energy Fuel 24:2716–2722 CrossRef Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production from H 2O and CO 2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe 3O 4 redox reactions: kinetic analysis. Energy Fuel 24:2716–2722 CrossRef
91.
go back to reference Mantzaras J (2008) Catalytic combustion of syngas. J Combust Sci Technol 180:1137–1168 CrossRef Mantzaras J (2008) Catalytic combustion of syngas. J Combust Sci Technol 180:1137–1168 CrossRef
92.
go back to reference Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241 CrossRef Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241 CrossRef
93.
go back to reference Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2004) Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy 29:715–725 CrossRef Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2004) Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy 29:715–725 CrossRef
94.
go back to reference Maag G, Zanganeh G, Steinfeld A (2009) Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. Int J Hydrog Energy 34:7676–7685 CrossRef Maag G, Zanganeh G, Steinfeld A (2009) Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. Int J Hydrog Energy 34:7676–7685 CrossRef
95.
go back to reference Rodat S, Abanades S, Flamant G (2009) High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K. Energy Fuel 23:2666–2674 CrossRef Rodat S, Abanades S, Flamant G (2009) High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K. Energy Fuel 23:2666–2674 CrossRef
96.
go back to reference Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23 CrossRef Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23 CrossRef
97.
go back to reference Petrasch J, Meier F, Friess H, Steinfeld A (2008) Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int J Heat Fluid Flow 29:315–326 CrossRef Petrasch J, Meier F, Friess H, Steinfeld A (2008) Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int J Heat Fluid Flow 29:315–326 CrossRef
98.
go back to reference Petrasch J, Wyss P, Stämpfli R, Friess H, Steinfeld A (2008) Tomography-based multi-scale analyses of the 3D geometrical morphology of reticulated porous ceramics. J Am Ceram Soc 91:2659–2665 CrossRef Petrasch J, Wyss P, Stämpfli R, Friess H, Steinfeld A (2008) Tomography-based multi-scale analyses of the 3D geometrical morphology of reticulated porous ceramics. J Am Ceram Soc 91:2659–2665 CrossRef
99.
go back to reference Dahl JK, Weimer AW, Lewandowski A, Bingham C, Brütsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43:5489–5495 CrossRef Dahl JK, Weimer AW, Lewandowski A, Bingham C, Brütsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43:5489–5495 CrossRef
100.
go back to reference Lovegrove K, Luzzi A, Soldiani I, Kreetz H (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337 CrossRef Lovegrove K, Luzzi A, Soldiani I, Kreetz H (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337 CrossRef
101.
go back to reference Z'Graggen A, Haueter P, Maag G, Vidal A, Romero M, Steinfeld A (2007) Hydrogen production by steam-gasification of petroleum coke using concentrated solar power – III. Reactor experimentation with slurry feeding. Int J Hydrog Energy 32:992–996 CrossRef Z'Graggen A, Haueter P, Maag G, Vidal A, Romero M, Steinfeld A (2007) Hydrogen production by steam-gasification of petroleum coke using concentrated solar power – III. Reactor experimentation with slurry feeding. Int J Hydrog Energy 32:992–996 CrossRef
102.
go back to reference Z'Graggen A, Steinfeld A (2009) Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – V. reactor modeling, optimization, and scale-up. Int J Hydrog Energy 33:5484–5492 CrossRef Z'Graggen A, Steinfeld A (2009) Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – V. reactor modeling, optimization, and scale-up. Int J Hydrog Energy 33:5484–5492 CrossRef
103.
go back to reference Piatkowski N, Wieckert C, Steinfeld A (2009) Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks. Fuel Process Technol 90:360–366 CrossRef Piatkowski N, Wieckert C, Steinfeld A (2009) Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks. Fuel Process Technol 90:360–366 CrossRef
104.
go back to reference Melchior T, Perkins C, Lichty P, Weimer AW, Steinfeld A (2009) Solar-driven biochar gasification in a particle-flow reactor. Chem Eng Process 48:1279–1287 CrossRef Melchior T, Perkins C, Lichty P, Weimer AW, Steinfeld A (2009) Solar-driven biochar gasification in a particle-flow reactor. Chem Eng Process 48:1279–1287 CrossRef
105.
go back to reference Lichty P, Perkins C, Woodruff B, Bingham C, Weimer AW (2010) Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Sol Energy Eng 132:011012–011011 CrossRef Lichty P, Perkins C, Woodruff B, Bingham C, Weimer AW (2010) Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Sol Energy Eng 132:011012–011011 CrossRef
106.
107.
go back to reference Villasmil W, Steinfeld A (2010) Hydrogen production by hydrogen sulfide splitting using concentrated solar energy – thermodynamics and economic evaluation. Energy Conv Manag 51:2353–2361 CrossRef Villasmil W, Steinfeld A (2010) Hydrogen production by hydrogen sulfide splitting using concentrated solar energy – thermodynamics and economic evaluation. Energy Conv Manag 51:2353–2361 CrossRef
108.
go back to reference Murray JP (1999) Aluminum-silicon carbo-thermal reduction using high-temperature solar process heat. In: Eckert CE (ed) Light metals. The Minerals, Metals, and Materials Society, Warrendale, pp 399–405 Murray JP (1999) Aluminum-silicon carbo-thermal reduction using high-temperature solar process heat. In: Eckert CE (ed) Light metals. The Minerals, Metals, and Materials Society, Warrendale, pp 399–405
109.
go back to reference Kruesi M, Galvez ME, Halmann M, Steinfeld A (2011) Solar aluminum production by vacuum carbothermal reduction of alumina - thermodynamic and experimental analyses. Metall Mater Trans B Process Metall Mater Process Sci 42B:254–260 CrossRef Kruesi M, Galvez ME, Halmann M, Steinfeld A (2011) Solar aluminum production by vacuum carbothermal reduction of alumina - thermodynamic and experimental analyses. Metall Mater Trans B Process Metall Mater Process Sci 42B:254–260 CrossRef
110.
go back to reference Loutzenhiser P, Tuerk O, Steinfeld A (2010) Production of Si by vacuum carbothermal reduction of SiO 2 using concentrated solar energy. J Metals 62:49–54 Loutzenhiser P, Tuerk O, Steinfeld A (2010) Production of Si by vacuum carbothermal reduction of SiO 2 using concentrated solar energy. J Metals 62:49–54
111.
go back to reference Flamant G, Kurtcuoglu V, Murray J, Steinfeld A (2006) Purification of metallurgical grade silicon by a solar process. Sol Energy Mater Sol Cells 90:2099–2106 CrossRef Flamant G, Kurtcuoglu V, Murray J, Steinfeld A (2006) Purification of metallurgical grade silicon by a solar process. Sol Energy Mater Sol Cells 90:2099–2106 CrossRef
112.
go back to reference Guillard T, Alvarez L, Anglaret E, Sauvajol JL, Bernier P, Flamant G, Laplaze D (1999) Production of fullerenes and carbon nanotubes by the solar energy route. J Phys IV France 9:399–404 CrossRef Guillard T, Alvarez L, Anglaret E, Sauvajol JL, Bernier P, Flamant G, Laplaze D (1999) Production of fullerenes and carbon nanotubes by the solar energy route. J Phys IV France 9:399–404 CrossRef
113.
go back to reference Luxembourg D, Flamant G, Laplaze D (2005) Solar synthesis of single-walled carbon nanotubes at medium scale. Carbon 43:2302–2310 CrossRef Luxembourg D, Flamant G, Laplaze D (2005) Solar synthesis of single-walled carbon nanotubes at medium scale. Carbon 43:2302–2310 CrossRef
114.
go back to reference Meier A, Kirillov V, Kuvshinov G, Mogilnykh Y, Reller A, Steinfeld A, Weidenkaff A (1999) Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon. Chem Eng Sci 54:3341–3348 CrossRef Meier A, Kirillov V, Kuvshinov G, Mogilnykh Y, Reller A, Steinfeld A, Weidenkaff A (1999) Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon. Chem Eng Sci 54:3341–3348 CrossRef
115.
go back to reference Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20:325–330 CrossRef Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20:325–330 CrossRef
116.
go back to reference Meier A, Bonaldi E, Cella GM, Lipinski W (2005) Multitube rotary kiln for the industrial solar production of lime. J Sol Energy Eng 127:386–395 CrossRef Meier A, Bonaldi E, Cella GM, Lipinski W (2005) Multitube rotary kiln for the industrial solar production of lime. J Sol Energy Eng 127:386–395 CrossRef
117.
go back to reference Schaffner B, Meier A, Wuillemin D, Hoffelner W, Steinfeld A (2003) Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation. Environ Sci Technol 37:165–170 CrossRef Schaffner B, Meier A, Wuillemin D, Hoffelner W, Steinfeld A (2003) Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation. Environ Sci Technol 37:165–170 CrossRef
118.
go back to reference Funken K-H, Roeb M, Schwarzboezl P, Warneke H (2001) Aluminum remelting using directly solar-heated rotary kilns. J Sol Energy Eng 123:117–124 CrossRef Funken K-H, Roeb M, Schwarzboezl P, Warneke H (2001) Aluminum remelting using directly solar-heated rotary kilns. J Sol Energy Eng 123:117–124 CrossRef
119.
go back to reference Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Möller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrog Energy 34:4256–4267 CrossRef Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Möller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrog Energy 34:4256–4267 CrossRef
120.
go back to reference Felder R, Meier A (2008) Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation. J Sol Energy Eng 130:011017–011011 CrossRef Felder R, Meier A (2008) Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation. J Sol Energy Eng 130:011017–011011 CrossRef
go back to reference Wieckert C, Epstein M, Olalde G, Santén S, Steinfeld A (2009) Zinc electrodes: solar thermal production. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 469–486 CrossRef Wieckert C, Epstein M, Olalde G, Santén S, Steinfeld A (2009) Zinc electrodes: solar thermal production. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 469–486 CrossRef
Metadata
Title
Solar Energy in Thermochemical Processing
Authors
Anton Meier
Aldo Steinfeld
Copyright Year
2022
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-1422-8_689

Premium Partners