Skip to main content
Top

2016 | OriginalPaper | Chapter

63. Solar Thermal Collectors with Low and High Concentration

Authors : Matteo Bortolato, Ahmed Aboulmagd, Andrea Padovan, Davide Del Col

Published in: Renewable Energy in the Service of Mankind Vol II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the performance analysis of different concentrating technologies through experimental and numerical modeling activities. Two solar thermal systems with different designs and, accordingly, different concentration ratios have been studied. The first solar device is a stationary compound parabolic concentrator (CPC) collector: it is provided with truncated or full CPC reflectors and evacuated tubes. Each evacuated tube is composed of an outer glass envelope and a glass absorber with selective coating in thermal contact, via absorber fin, with a U-shaped channel for the liquid flow. The second system is a parabolic trough concentrator (PTC) with two-axis solar tracking: the primary optics consists of a segment of parabolic cylinder which concentrates the direct normal irradiance (DNI) on a linear receiver. In this system, two types of flat receivers have been tested. One receiver has been designed for thermal energy extraction, and it consists of a canalized roll-bond plate provided with a semi-selective coating. The other receiver has been designed for cogeneration of electricity and heat (CPVT), and it is equipped with triple-junction photovoltaic cells, which are actively cooled by an aluminum roll-bond heat exchanger. The performance of the described collectors has been experimentally characterized at the Solar Energy Conversion Laboratory of the University of Padova (45.4°N, 11.9°E), Italy. The collectors have also been mathematically modeled, and the numerical data have been validated against the experimental measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Foster R, Ghassemi M, Cota A, Energy S (2010) Renewable energy and the environment CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL, pp 33487–32742 Foster R, Ghassemi M, Cota A, Energy S (2010) Renewable energy and the environment CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL, pp 33487–32742
2.
go back to reference Hsieh CK (1981) Thermal analysis of CPC collectors. Sol Energy 27(1):19–29CrossRef Hsieh CK (1981) Thermal analysis of CPC collectors. Sol Energy 27(1):19–29CrossRef
3.
go back to reference Kumar R, Kaushik SC, Garg HP, Vatsa N (1999) Numerical analysis of a tubular solar collector with cusp reflectors. Int J Ambient Energy 20(3):149–158CrossRef Kumar R, Kaushik SC, Garg HP, Vatsa N (1999) Numerical analysis of a tubular solar collector with cusp reflectors. Int J Ambient Energy 20(3):149–158CrossRef
4.
go back to reference Kim JT, Ahn HT, Han H, Kim HT, Chun W (2007) The performance simulation of all-glass vacuum tubes with coaxial fluid conduit. Int Commun Heat Mass Transf 34(1):587–597CrossRef Kim JT, Ahn HT, Han H, Kim HT, Chun W (2007) The performance simulation of all-glass vacuum tubes with coaxial fluid conduit. Int Commun Heat Mass Transf 34(1):587–597CrossRef
5.
go back to reference Rabl A (1975) Comparison of solar concentrators. Sol Energy 18(1):93–111 Rabl A (1975) Comparison of solar concentrators. Sol Energy 18(1):93–111
6.
go back to reference Kim YS, Balkoski K, Jiang L, Winston R (2013) Efficient stationary solar thermal collector systems operating at a medium-temperature range. Appl Energy 111(1):1071–1079CrossRef Kim YS, Balkoski K, Jiang L, Winston R (2013) Efficient stationary solar thermal collector systems operating at a medium-temperature range. Appl Energy 111(1):1071–1079CrossRef
7.
go back to reference Zambolin E, Del Col D (2012) An improved procedure for the experimental characterization of optical efficiency in evacuated tube solar collectors. Renew Energy 43(1):37–46CrossRef Zambolin E, Del Col D (2012) An improved procedure for the experimental characterization of optical efficiency in evacuated tube solar collectors. Renew Energy 43(1):37–46CrossRef
8.
go back to reference Soriga I, Neaga C, 2012 Thermal analysis of a linear Fresnel lens solar collector with black body cavity receiver, U.P.B. Sci. Bull., Series D, vol. 74, no. 4, ISSN 1454-2358 Soriga I, Neaga C, 2012 Thermal analysis of a linear Fresnel lens solar collector with black body cavity receiver, U.P.B. Sci. Bull., Series D, vol. 74, no. 4, ISSN 1454-2358
9.
go back to reference Rabl A (1976) Optical and thermal properties of compound parabolic concentrators. Sol Energy 18(1):497–511CrossRef Rabl A (1976) Optical and thermal properties of compound parabolic concentrators. Sol Energy 18(1):497–511CrossRef
11.
go back to reference Comité Européen de Normalisation (CEN) (2006) EN 12975-2: Thermal solar systems and components—solar collector—part 2: test methods, Brussels, Belgium Comité Européen de Normalisation (CEN) (2006) EN 12975-2: Thermal solar systems and components—solar collector—part 2: test methods, Brussels, Belgium
12.
go back to reference Zamboiln E, Del Col D (2010) Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol Energy 84(1):1382–1396CrossRef Zamboiln E, Del Col D (2010) Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol Energy 84(1):1382–1396CrossRef
Metadata
Title
Solar Thermal Collectors with Low and High Concentration
Authors
Matteo Bortolato
Ahmed Aboulmagd
Andrea Padovan
Davide Del Col
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-18215-5_63