Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

Solar Thermal Systems: Life Cycle Assessment

Authors : Spiros Alexopoulos, Gautam Valiveti

Published in: Solar Thermal Energy

Publisher: Springer US

Excerpt

ALCA/CLCA
Attributional LCA and Consequential LCA
ADP
Abiotic resource depletion potential
AP
Acidification potential
Area of Protection/Concern
It is a broad aspect of the natural or urban environment that comprises a collection of relevant impact categories. For example, Human Health, Natural Resources
Biosphere
All natural systems
BOS
Balance of system
Category Indicator
Indicators are parameters the measures of which determine the magnitude of impact for an impact category
CC
Combinded cycle
CML
Centre of Environmental Science – Leiden University (CML)
CPVT
Concentrating photovoltaic-thermal system
Cradle-to-Grave
Term illustrating the usual period considered in a product’s life cycle, cradle, and grave referring to upstream and downstream phases respectively
CSP
Concentrated Solar Power. Energy Conversion Technologies in which concentrating the intensity of incoming solar radiation allows for higher thermal potential
DSHWS
Domestic solar hot water system
EIA
Environmental Impact Assessment
Environmental impact
Any change to the environment, whether adverse or beneficial, resulting from a facility’s activities, products, or services
Functional Unit
Basic unit used as a reference to compare two systems based on a common function served by them.
GHG
Greenhouse gas emissions
GHG
Greenhouse gas, compound gas that traps heat or longwave radiation in the atmosphere
Global warming impact
Impact caused by greenhouse gas pollution, resulting in immediate and direct changes to the planet
GWP
Global warming potential
GWP
Global warming protection
HCE
Heat collection elements
HTF
Heat transfer fluid
Impact Category
It is a sustainability concern under a broad area of concern, a group of which may be said to represent the area of concern under the LCIA method selected
IQR
Interquartile range
LC
Life cycle
LCA
Life cycle assessment. A value chain analysis method pertaining to environment
LCM
Life cycle management
Life Cycle Impact Assessment (LCIA)
Phase of an LCA where environmental impacts are calculated using an LCIA method usually postcharacterization in the LCI phase
Life cycle Inventory (LCI)
Inventory of materials, energy, processes, and effluents of a system spanning its entire life cycle
MCA
Multicriteria Analysis
MS CSP
Molten salt concentrated solar power
O & M
Operation & Maintenance
PTC
Parabolic trough collector
PV
Phtovoltaic
SCA
Solar collector assemblies
Scenario Analysis
Treatment of the impact assessment studies using different scenarios to mitigate uncertainties in results
SETAC
Society of Environmental Toxicology and Chemistry
SHC
Solar heating and cooling
Solar Thermal Power
Form of energy and a technology for harnessing solar energy to generate thermal energy or electrical energy for use in industry
sLCA
Social Life cycle analysis
SPT
Solar power tower
STS
Solar thermal system
System Process
It is a unit for which input and output data are aggregated (an aggregated life cycle result saved as a process)
Technosphere
All manmade systems
TES
Thermal energy storage
UK
United Kingdom
UNEP
United Nations Environment Programme
Unit Process
It is the smallest unit analyzed for which input and output data are quantified
USA
United States of America

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference International Standard Organization (2006) ISO 14040. Environmental management – Life Cycle Assessment – principles and framework International Standard Organization (2006) ISO 14040. Environmental management – Life Cycle Assessment – principles and framework
2.
go back to reference Finnveden G, Hauschild MZ, Ekvall T, Guine’e J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21 CrossRef Finnveden G, Hauschild MZ, Ekvall T, Guine’e J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21 CrossRef
3.
go back to reference de Haes HAU, Heijungs R (2007) Life-cycle assessment for energy analysis and management. Appl Energy 84(7–8):817–827 CrossRef de Haes HAU, Heijungs R (2007) Life-cycle assessment for energy analysis and management. Appl Energy 84(7–8):817–827 CrossRef
4.
go back to reference Anex R, Lifset R (2014) Life cycle assessment different models for different purposes. J Ind Ecol 18(3):321–323 CrossRef Anex R, Lifset R (2014) Life cycle assessment different models for different purposes. J Ind Ecol 18(3):321–323 CrossRef
5.
go back to reference Weidema BP, Schmidt JH (2010) Avoiding allocation in life cycle assessment revisited. J Ind Ecol 14(2):192–195 CrossRef Weidema BP, Schmidt JH (2010) Avoiding allocation in life cycle assessment revisited. J Ind Ecol 14(2):192–195 CrossRef
6.
go back to reference Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14(2):335–353 CrossRef Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14(2):335–353 CrossRef
7.
go back to reference Guinée J (2002) Handbook on life cycle assessment. Springer Guinée J (2002) Handbook on life cycle assessment. Springer
8.
go back to reference Berglund M, Borjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30:254–266 CrossRef Berglund M, Borjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30:254–266 CrossRef
9.
go back to reference Höjer M, Ahlroth S, Dreborg K-H, Ekvall T, Finnveden G, Hjelm O, Hochschorner E, Nilsson M, Palm V (2008) Scenarios in selected tools for environmental systems analysis. J Clean Prod 16:1958–1970 CrossRef Höjer M, Ahlroth S, Dreborg K-H, Ekvall T, Finnveden G, Hjelm O, Hochschorner E, Nilsson M, Palm V (2008) Scenarios in selected tools for environmental systems analysis. J Clean Prod 16:1958–1970 CrossRef
10.
go back to reference Tukker A (1999) Life cycle assessments for waste, part I: overview, methodology and scoping process. Int J Life Cycle Assess 4(5):275–281 CrossRef Tukker A (1999) Life cycle assessments for waste, part I: overview, methodology and scoping process. Int J Life Cycle Assess 4(5):275–281 CrossRef
11.
go back to reference Plevin RJ, Delucchi MA, Creutzig F (2013) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83 CrossRef Plevin RJ, Delucchi MA, Creutzig F (2013) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83 CrossRef
12.
go back to reference Brandão M, Clift R, Cowie A, Greenhalgh S (2014) The use of life cycle assessment in the support of robust (climate) policy making: comment on “using attributional life cycle assessment to estimate climate-change mitigation …”. J Ind Ecol 18(3):461–463 CrossRef Brandão M, Clift R, Cowie A, Greenhalgh S (2014) The use of life cycle assessment in the support of robust (climate) policy making: comment on “using attributional life cycle assessment to estimate climate-change mitigation …”. J Ind Ecol 18(3):461–463 CrossRef
13.
go back to reference Hertwich EG, Gibon T, Bouman EA, Arvesen A, Suh S, Heath GA, Bergesen JD, Ramirez A, Vega MI, Shi L (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci USA (PNAS) 112(20):6277–6282 CrossRef Hertwich EG, Gibon T, Bouman EA, Arvesen A, Suh S, Heath GA, Bergesen JD, Ramirez A, Vega MI, Shi L (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci USA (PNAS) 112(20):6277–6282 CrossRef
14.
go back to reference Comparison of energy systems using life cycle assessment A Special Report of the World Energy Council July 2004 Comparison of energy systems using life cycle assessment A Special Report of the World Energy Council July 2004
15.
go back to reference Caldés N, Lechón Y (2012) Socio-economic and environmental assessment of concentrating solar power (CSP) systems. CIEMAT Woodhead Publishing CrossRef Caldés N, Lechón Y (2012) Socio-economic and environmental assessment of concentrating solar power (CSP) systems. CIEMAT Woodhead Publishing CrossRef
16.
go back to reference Samus T, Lang B, Rohn H (2013) Assessing the natural resource use and the resource efficiency potential of the Desertec concept. Sol Energy 87:176–183 CrossRef Samus T, Lang B, Rohn H (2013) Assessing the natural resource use and the resource efficiency potential of the Desertec concept. Sol Energy 87:176–183 CrossRef
17.
go back to reference Pihl E, Kushnir D, Sandén B, Johnsson F (2012) Material constraints for concentrating solar thermal power. Energy 44:944–954 CrossRef Pihl E, Kushnir D, Sandén B, Johnsson F (2012) Material constraints for concentrating solar thermal power. Energy 44:944–954 CrossRef
18.
go back to reference Lamnatou C, Chemisana D (2017) Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues. Renew Sust Energ Rev 78:916–932 CrossRef Lamnatou C, Chemisana D (2017) Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues. Renew Sust Energ Rev 78:916–932 CrossRef
19.
go back to reference Burkhardt JJ, Heath G, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation systematic review and harmonization. J Ind Ecol 16(S1):93–109 CrossRef Burkhardt JJ, Heath G, Cohen E (2012) Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation systematic review and harmonization. J Ind Ecol 16(S1):93–109 CrossRef
20.
go back to reference Piemonte V, De Falco M, Tarquini P, Giaconia A (2011) Life cycle assessment of a high temperature molten salt concentrated solar power plant. Sol Energy 85:1101–1108 CrossRef Piemonte V, De Falco M, Tarquini P, Giaconia A (2011) Life cycle assessment of a high temperature molten salt concentrated solar power plant. Sol Energy 85:1101–1108 CrossRef
21.
go back to reference De Falco M, Giaconia A, Marrelli M, Tarquini P, Grena R, Caputo G (2009) Enriched methane production using solar energy: an assessment of plant performance. Int J Hydrog Energy 34:98–109 CrossRef De Falco M, Giaconia A, Marrelli M, Tarquini P, Grena R, Caputo G (2009) Enriched methane production using solar energy: an assessment of plant performance. Int J Hydrog Energy 34:98–109 CrossRef
22.
go back to reference Hofstetter P, Braunschweig A, Mettier M, Wenk RM, Tietje O (2008) The mixing triangle: correlation and graphical decision support for LCA-based comparison. J Ind Ecol 3(4):97–115 CrossRef Hofstetter P, Braunschweig A, Mettier M, Wenk RM, Tietje O (2008) The mixing triangle: correlation and graphical decision support for LCA-based comparison. J Ind Ecol 3(4):97–115 CrossRef
23.
go back to reference Heath GA, Turchi CS, Burkhardt JJ (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and impacts of key design alternatives SolarPACES 2011 Granada, Spain, September 20–23 Heath GA, Turchi CS, Burkhardt JJ (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and impacts of key design alternatives SolarPACES 2011 Granada, Spain, September 20–23
24.
go back to reference Burkhardt JJ, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. American Chemical Society CrossRef Burkhardt JJ, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. American Chemical Society CrossRef
26.
go back to reference Koroneos CJ, Piperidis SA, Tatatzikidis CA, Rovas DC (2008) Life cycle assessment of a solar thermal concentrating system selected papers from the WSEAS conferences in Spain, Santander, Cantabria, September 23–25 Koroneos CJ, Piperidis SA, Tatatzikidis CA, Rovas DC (2008) Life cycle assessment of a solar thermal concentrating system selected papers from the WSEAS conferences in Spain, Santander, Cantabria, September 23–25
27.
go back to reference Fricke B, Ziolko C, Anthrakidis A, Alexopoulos S, Hoffschmidt B, Giese F, Dillig M (2011) INNOSOL – environmental aspects of the open volumetric receiver technology SWC conference proceeding Fricke B, Ziolko C, Anthrakidis A, Alexopoulos S, Hoffschmidt B, Giese F, Dillig M (2011) INNOSOL – environmental aspects of the open volumetric receiver technology SWC conference proceeding
28.
go back to reference Fricke B, Ziolko C, Anthrakidis A, Alexopoulos S, Hoffschmidt B, Giese F, Dillig M (2011) INNOSOL – life cycle analysis of solar tower power plants SolarPaces conference proceedings Fricke B, Ziolko C, Anthrakidis A, Alexopoulos S, Hoffschmidt B, Giese F, Dillig M (2011) INNOSOL – life cycle analysis of solar tower power plants SolarPaces conference proceedings
29.
go back to reference Centre of Environmental Science, Fuels and Raw Material Bureau, School of Systems Engineering, Policy Analysis and Management – Delft University: Life Cycle Assessment, an operational guide to the ISO standards, Part 1–3, 2001, Leiden Centre of Environmental Science, Fuels and Raw Material Bureau, School of Systems Engineering, Policy Analysis and Management – Delft University: Life Cycle Assessment, an operational guide to the ISO standards, Part 1–3, 2001, Leiden
30.
go back to reference Alexopoulos S, Anthrakidis A, Fricke B, Ziolko C (2017) Life cycle analyses of solar tower power plants Abstract DFG Jordan Alexopoulos S, Anthrakidis A, Fricke B, Ziolko C (2017) Life cycle analyses of solar tower power plants Abstract DFG Jordan
31.
go back to reference Fricke B, Hoffschmidt B (2010) Ecobalance of a solar thermal tower power plant with volumetric receiver SolarPaces conference proceedings Fricke B, Hoffschmidt B (2010) Ecobalance of a solar thermal tower power plant with volumetric receiver SolarPaces conference proceedings
32.
go back to reference Ko N, Lorenz M, Horn R, Krieg H, Baumann M (2018) Sustainability assessment of concentrated solar power (CSP) tower plants – integrating LCA, LCC and LCWE in one framework. Procedia CIRP 69:395–400 CrossRef Ko N, Lorenz M, Horn R, Krieg H, Baumann M (2018) Sustainability assessment of concentrated solar power (CSP) tower plants – integrating LCA, LCC and LCWE in one framework. Procedia CIRP 69:395–400 CrossRef
33.
go back to reference Winterbach F (2011 December) Life cycle assessment (LCA) of various solar heat technologies. Bachelor thesis, Stellenbosch University Winterbach F (2011 December) Life cycle assessment (LCA) of various solar heat technologies. Bachelor thesis, Stellenbosch University
34.
go back to reference Corona B, Ruiz D, San Miguel G (2016) Environmental assessment of a HYSOL CSP plant compared to a conventional tower CSP plant. Procedia Comput Sci 83:1110–1117 CrossRef Corona B, Ruiz D, San Miguel G (2016) Environmental assessment of a HYSOL CSP plant compared to a conventional tower CSP plant. Procedia Comput Sci 83:1110–1117 CrossRef
35.
go back to reference de Laborderie A, Puech C, Adra N, Blanc I, Beloin-Saint-Pierre D, Padey P, Payet J, Sie M, Jacquin P (2011) Environmental impacts of solar thermal systems with life cycle assessment world renewable energy congress, Linkköping 8–13, conference proceedings pp 3678–3685 de Laborderie A, Puech C, Adra N, Blanc I, Beloin-Saint-Pierre D, Padey P, Payet J, Sie M, Jacquin P (2011) Environmental impacts of solar thermal systems with life cycle assessment world renewable energy congress, Linkköping 8–13, conference proceedings pp 3678–3685
36.
go back to reference Simons A, Firth SK (2011) Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage. Energy Buildings 43(6):1231–1240 CrossRef Simons A, Firth SK (2011) Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage. Energy Buildings 43(6):1231–1240 CrossRef
37.
go back to reference Comodi G, Bevilacqua M, Caresana F, Pelagalli L, Venella P, Paciarotti C (2014) LCA analysis of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Energy Procedia 61:234–237 CrossRef Comodi G, Bevilacqua M, Caresana F, Pelagalli L, Venella P, Paciarotti C (2014) LCA analysis of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Energy Procedia 61:234–237 CrossRef
38.
go back to reference Beccali M, Cellura M, Longo S, Mugnier D (2016) A simplified LCA tool for solar heating and cooling systems. Energy Procedia 91:317–324 CrossRef Beccali M, Cellura M, Longo S, Mugnier D (2016) A simplified LCA tool for solar heating and cooling systems. Energy Procedia 91:317–324 CrossRef
39.
go back to reference Mann MK, Spath PL (2001) A life cycle assessment of biomass cofiring in a coal- fired power plant. Clean Prod Processes 3(2):81–91 CrossRef Mann MK, Spath PL (2001) A life cycle assessment of biomass cofiring in a coal- fired power plant. Clean Prod Processes 3(2):81–91 CrossRef
40.
go back to reference Wu P, Ma X, Ji J, Ma Y (2017) Review on life cycle assessment of energy payback of solar photovoltaic systems and a case study. Energy Procedia 105:68–74 CrossRef Wu P, Ma X, Ji J, Ma Y (2017) Review on life cycle assessment of energy payback of solar photovoltaic systems and a case study. Energy Procedia 105:68–74 CrossRef
41.
go back to reference Uchiyama Y (2007) Life cycle assessment of renewable energy generation technologies. IEEJ Trans 1:44–48 Uchiyama Y (2007) Life cycle assessment of renewable energy generation technologies. IEEJ Trans 1:44–48
42.
go back to reference Cellura M, Grippaldi V, Lo Brano V, Longo S, Mistretta M (2011) Life cycle assessment of a solar PV/T concentrator system life cycle management conference LCM Cellura M, Grippaldi V, Lo Brano V, Longo S, Mistretta M (2011) Life cycle assessment of a solar PV/T concentrator system life cycle management conference LCM
43.
go back to reference Evans A, Strezov V, Evans TJ (2009) Assessment of sustainability indicators for renewable energy technologies. Renew Sust Energ Rev 13:1082–1088 CrossRef Evans A, Strezov V, Evans TJ (2009) Assessment of sustainability indicators for renewable energy technologies. Renew Sust Energ Rev 13:1082–1088 CrossRef
44.
go back to reference Price L, Kendall A (2012) Wind power as a case study improving life cycle assessment reporting to better enable meta-analyses. J Ind Ecol 16:22–27 CrossRef Price L, Kendall A (2012) Wind power as a case study improving life cycle assessment reporting to better enable meta-analyses. J Ind Ecol 16:22–27 CrossRef
45.
go back to reference Martίnez E, Sanz F, Pellegrini S, Jiménez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34:667–673 CrossRef Martίnez E, Sanz F, Pellegrini S, Jiménez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34:667–673 CrossRef
46.
go back to reference Spielmann M, Scholz RW (2005) Life cycle inventories of transport services: background data for freight transport. Int J Life Cycle Assess 10(1):85–94 CrossRef Spielmann M, Scholz RW (2005) Life cycle inventories of transport services: background data for freight transport. Int J Life Cycle Assess 10(1):85–94 CrossRef
47.
go back to reference Inhaber H (2004) Water use in renewable and conventional electricity production. Energy Sources 26:309–322 CrossRef Inhaber H (2004) Water use in renewable and conventional electricity production. Energy Sources 26:309–322 CrossRef
48.
go back to reference Troldborg M, Heslop S, Hough RL (2014) Assessing the sustainability of renewable energy technologies using multi-criteria analysis: suitability of approach for national-scale assessments and associated uncertainties. Renew Sust Energ Rev 39:1173–1184 CrossRef Troldborg M, Heslop S, Hough RL (2014) Assessing the sustainability of renewable energy technologies using multi-criteria analysis: suitability of approach for national-scale assessments and associated uncertainties. Renew Sust Energ Rev 39:1173–1184 CrossRef
49.
go back to reference Greening B, Azapagic A (2012) Domestic heat pumps: life cycle environmental impacts and potential implications for the UK. Energy 39(1):205–217 CrossRef Greening B, Azapagic A (2012) Domestic heat pumps: life cycle environmental impacts and potential implications for the UK. Energy 39(1):205–217 CrossRef
50.
go back to reference Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew Sust Energ Rev 28:555–565 CrossRef Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew Sust Energ Rev 28:555–565 CrossRef
51.
go back to reference Trieb F, Dürrschmidt W (2003) Concentrated solar power now DLR Trieb F, Dürrschmidt W (2003) Concentrated solar power now DLR
Metadata
Title
Solar Thermal Systems: Life Cycle Assessment
Authors
Spiros Alexopoulos
Gautam Valiveti
Copyright Year
2022
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-1422-8_1057

Premium Partners