Skip to main content
Top

2018 | OriginalPaper | Chapter

15. Solid-State Materials for Hydrogen Storage

Authors : Rolando Pedicini, Irene Gatto, Enza Passalacqua

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen (H2) is a promising replacement energy carrier and storage molecular due to its high energy density by weight. For the constraint of size and weight in vehicles, the onboard hydrogen storage system has to be small and lightweight. Therefore, a lot of research is devoted to finding an efficient method of hydrogen storage based on both mechanical compression and sorption on solid-state materials. An overview of the current research trend and perspectives on materials-based hydrogen storage including both physical and chemical storage is provided in the present paper. Part of this chapter was dedicated to recent results on two innovative materials: hybrid materials based on manganese oxide anchored to a polymeric matrix and natural volcanic powders. A prototype H2 tank, filled with the developed hybrid material, was realized and integrated into a polymer electrolyte membrane (PEM) single fuel cell (FC) demonstrating the material capability to coupling with the FC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Borowitz, Farewell Fossil Fuels, Springer Science book ISBN 978-0-306 45781-4, (1999) S. Borowitz, Farewell Fossil Fuels, Springer Science book ISBN 978-0-306 45781-4, (1999)
3.
go back to reference S. Iijima, Nature 354, 56 (1991); A.C. Dillon, K.M. Jones, T.A. Bekke-dahl, H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997) S. Iijima, Nature 354, 56 (1991); A.C. Dillon, K.M. Jones, T.A. Bekke-dahl, H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)
4.
5.
go back to reference H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131, 7016–7022 (2009)CrossRef H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131, 7016–7022 (2009)CrossRef
6.
go back to reference Z. Wang, L. Sun, F. Xu, H. Zhou, X. Peng, D. Sun, J. Wang, Y. Du, Nitrogen-doped porous carbons with high performance for hydrogen storage. Int. J. Hydrogen Energy 41, 8489–8497 (2016)CrossRef Z. Wang, L. Sun, F. Xu, H. Zhou, X. Peng, D. Sun, J. Wang, Y. Du, Nitrogen-doped porous carbons with high performance for hydrogen storage. Int. J. Hydrogen Energy 41, 8489–8497 (2016)CrossRef
7.
go back to reference H. Jung, K.T. Park, M.N. Gueye, S.H. So, C.R. Park, Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. Int. J. Hydrogen Energy 41, 5019–5027 (2016)CrossRef H. Jung, K.T. Park, M.N. Gueye, S.H. So, C.R. Park, Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. Int. J. Hydrogen Energy 41, 5019–5027 (2016)CrossRef
8.
go back to reference N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)CrossRef N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)CrossRef
9.
go back to reference K. Koh, A.G. Wong-Foy, A.J. Matzger, A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009)CrossRef K. Koh, A.G. Wong-Foy, A.J. Matzger, A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009)CrossRef
10.
go back to reference N.M. Musyoka, J. Ren, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 42, 5299–5307 (2016)CrossRef N.M. Musyoka, J. Ren, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 42, 5299–5307 (2016)CrossRef
11.
go back to reference D. Ramimoghadam, E. MacA Gray, C.J. Webb, Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrogen Energy 41, 16944–16965 (2016)CrossRef D. Ramimoghadam, E. MacA Gray, C.J. Webb, Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrogen Energy 41, 16944–16965 (2016)CrossRef
26.
go back to reference P. Chen, E. Akiba, S. Orimo, A. Zuettel, L. Schlapbach, Hydrogen storage by reversible metal hydride formation in the Book: Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (2016) P. Chen, E. Akiba, S. Orimo, A. Zuettel, L. Schlapbach, Hydrogen storage by reversible metal hydride formation in the Book: Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (2016)
27.
go back to reference G. Friedlmeier, M. Groll, Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloy Compd, Elsevier-Amsterdam, 253–254, 550–555 (1997) G. Friedlmeier, M. Groll, Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloy Compd, Elsevier-Amsterdam, 253–254, 550–555 (1997)
28.
go back to reference H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – a review of recent progress. J. Alloys Compd. 658, 280–300 (2016)CrossRef H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – a review of recent progress. J. Alloys Compd. 658, 280–300 (2016)CrossRef
29.
go back to reference M. Ron, The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J. Alloy Compd. 283, 178–191 (1999)CrossRef M. Ron, The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J. Alloy Compd. 283, 178–191 (1999)CrossRef
30.
go back to reference C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen, Q.D. Wang, The hydriding kinetics of MlNi5 – I. Development of the model. Int. J. Hydrogen Energy 21, 471–478 (1996)CrossRef C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen, Q.D. Wang, The hydriding kinetics of MlNi5 – I. Development of the model. Int. J. Hydrogen Energy 21, 471–478 (1996)CrossRef
31.
go back to reference J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010)CrossRef J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010)CrossRef
32.
go back to reference K. Sanjay, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima, Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int. J. Hydrog. Energy 42, 5220–5226 (2017)CrossRef K. Sanjay, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima, Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int. J. Hydrog. Energy 42, 5220–5226 (2017)CrossRef
33.
go back to reference R. Pedicini, I. Gatto, M. Coduri, C.A. Biffi, A. Tuissi, Preliminary investigation on metal alloy based on Cr/Ti, HYPOTHESIS XII Conference, Syracuse, 28–30 June 2017 R. Pedicini, I. Gatto, M. Coduri, C.A. Biffi, A. Tuissi, Preliminary investigation on metal alloy based on Cr/Ti, HYPOTHESIS XII Conference, Syracuse, 28–30 June 2017
34.
go back to reference H. Imoto, M. Sasaki, T. Saito, Y. Sasaki, Bull. Chem. Soc. Jpn. 53(6), 1584–1587 (1980)CrossRef H. Imoto, M. Sasaki, T. Saito, Y. Sasaki, Bull. Chem. Soc. Jpn. 53(6), 1584–1587 (1980)CrossRef
35.
go back to reference W.R. Schmidt, Activity report of the United Technologies Research Center for the Polymer Dispersed Metal Hydride program, DOE contract DEFC36-00G010535 W.R. Schmidt, Activity report of the United Technologies Research Center for the Polymer Dispersed Metal Hydride program, DOE contract DEFC36-00G010535
36.
go back to reference Z. Liu, Z. Lei, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2. J. Alloys Compd. 443, 121–124 (2007)CrossRef Z. Liu, Z. Lei, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2. J. Alloys Compd. 443, 121–124 (2007)CrossRef
37.
go back to reference Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2- doped NaAlH4. Int. J. Hydrog. Energy 33, 6195–6200 (2008)CrossRef Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2- doped NaAlH4. Int. J. Hydrog. Energy 33, 6195–6200 (2008)CrossRef
38.
go back to reference R. Pedicini, A. Saccà, A. Carbone, E. Passalacqua, Hydrogen storage based on the polymeric material. Int. J. Hydrog. Energy 36, 9062–9068 (2011)CrossRef R. Pedicini, A. Saccà, A. Carbone, E. Passalacqua, Hydrogen storage based on the polymeric material. Int. J. Hydrog. Energy 36, 9062–9068 (2011)CrossRef
39.
go back to reference G. Zhu, H. Li, L. Deng, Z.H. Liu, Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 64, 1763–1765 (2010)CrossRef G. Zhu, H. Li, L. Deng, Z.H. Liu, Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 64, 1763–1765 (2010)CrossRef
40.
go back to reference A.D. Zdetsis, M.M. Sigalas, E.N. Koukarasad, Phys. Chem. Chem. Phys. 16, 14172–14182 (2014)CrossRef A.D. Zdetsis, M.M. Sigalas, E.N. Koukarasad, Phys. Chem. Chem. Phys. 16, 14172–14182 (2014)CrossRef
41.
go back to reference R. Pedicini, F. Matera, G. Giacoppo, I. Gatto, E. Passalacqua, Int. J. Hydrogen Energy 40, 17388–17393 (2015)CrossRef R. Pedicini, F. Matera, G. Giacoppo, I. Gatto, E. Passalacqua, Int. J. Hydrogen Energy 40, 17388–17393 (2015)CrossRef
42.
go back to reference R. Pedicini, L. Miraglia, A. Carbone, E. Passalacqua, I. Gatto, Interesting hydrogen storage behavior of volcanic powders, The III Energy & Materials Research Conference – EMR 2017 Lisbon, 5–7 Apr 2017 R. Pedicini, L. Miraglia, A. Carbone, E. Passalacqua, I. Gatto, Interesting hydrogen storage behavior of volcanic powders, The III Energy & Materials Research Conference – EMR 2017 Lisbon, 5–7 Apr 2017
43.
go back to reference L. Miraglia, Tech. Report INGV 261, 5–24 (2013) L. Miraglia, Tech. Report INGV 261, 5–24 (2013)
Metadata
Title
Solid-State Materials for Hydrogen Storage
Authors
Rolando Pedicini
Irene Gatto
Enza Passalacqua
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56364-9_15

Premium Partners