Skip to main content
Top

2020 | OriginalPaper | Chapter

8. Solve Case

Author : Zhiqiang (John) Zhai

Published in: Computational Fluid Dynamics for Built and Natural Environments

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 5 presents the final universal form of the discretized governing equations for all flow conservations (e.g., mass, momentum, energy).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Benim AC, Zinser W (1986) A segregated formulation of Navier-Stokes equations with finite elements. Comput Methods Appl Mech Eng 57(2):223–237MATHCrossRef Benim AC, Zinser W (1986) A segregated formulation of Navier-Stokes equations with finite elements. Comput Methods Appl Mech Eng 57(2):223–237MATHCrossRef
go back to reference Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. Fundam Mixed Convect 213:65–72 Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. Fundam Mixed Convect 213:65–72
go back to reference Chen QY, Xu WR (1998) A zero-equation turbulence model for indoor airflow simulation. Energy Build 28(2):137–144CrossRef Chen QY, Xu WR (1998) A zero-equation turbulence model for indoor airflow simulation. Energy Build 28(2):137–144CrossRef
go back to reference Chow WK, Cheung YL (1997) Comparison of the algorithms PISO and SIMPLER for solving pressure-velocity linked equations in simulating compartmental fire. Numer Heat Transfer 31(1):87–112CrossRef Chow WK, Cheung YL (1997) Comparison of the algorithms PISO and SIMPLER for solving pressure-velocity linked equations in simulating compartmental fire. Numer Heat Transfer 31(1):87–112CrossRef
go back to reference Cohen J, Molemake JA (2009) Fast double precision CFD code using CUDA. In: 21st international conference on parallel computational fluid dynamics Cohen J, Molemake JA (2009) Fast double precision CFD code using CUDA. In: 21st international conference on parallel computational fluid dynamics
go back to reference Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5(3):243–255MathSciNetMATHCrossRef Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5(3):243–255MathSciNetMATHCrossRef
go back to reference Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process 58(5):471–483CrossRef Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process 58(5):471–483CrossRef
go back to reference Foster N, Metaxas D (1997) Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press, Addison-Wesley Publishing Co Foster N, Metaxas D (1997) Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press, Addison-Wesley Publishing Co
go back to reference Ghia U, Ghia KN, Shin CT (1982) High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411MATHCrossRef Ghia U, Ghia KN, Shin CT (1982) High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411MATHCrossRef
go back to reference Haroutunian V, Engelman MS, Hasbani I (1993) Segregated finite element algorithms for the numerical solution of large scale incompressible flow problems. Int J Numer Methods Fluids 17(4):323–348MATHCrossRef Haroutunian V, Engelman MS, Hasbani I (1993) Segregated finite element algorithms for the numerical solution of large scale incompressible flow problems. Int J Numer Methods Fluids 17(4):323–348MATHCrossRef
go back to reference Hauke G, Landaberea A, Garmendia I, Canales J (2005) A segregated method for compressible flow computation part I: isothermal compressible flows. Int J Numer Methods Fluids 47(4):183–209MATHCrossRef Hauke G, Landaberea A, Garmendia I, Canales J (2005) A segregated method for compressible flow computation part I: isothermal compressible flows. Int J Numer Methods Fluids 47(4):183–209MATHCrossRef
go back to reference Huang HC, Li ZH, Usmani AS (1999) Finite element analysis for transient non-Newtonian flow. Springer London Limited, LondonMATHCrossRef Huang HC, Li ZH, Usmani AS (1999) Finite element analysis for transient non-Newtonian flow. Springer London Limited, LondonMATHCrossRef
go back to reference Jin M, Chen Q (2015) Improvement of fast fluid dynamics with a conservative semi-Lagrangian scheme. Int J Numer Methods Heat Fluid Flow 25(1):2–18MathSciNetMATHCrossRef Jin M, Chen Q (2015) Improvement of fast fluid dynamics with a conservative semi-Lagrangian scheme. Int J Numer Methods Heat Fluid Flow 25(1):2–18MathSciNetMATHCrossRef
go back to reference Jin M, Zuo W, Chen Q (2012) Improvements of fast fluid dynamics for simulating airflow in buildings. Numer Heat Transfer Part B Fundam 62(6):419–438CrossRef Jin M, Zuo W, Chen Q (2012) Improvements of fast fluid dynamics for simulating airflow in buildings. Numer Heat Transfer Part B Fundam 62(6):419–438CrossRef
go back to reference Jin M, Zuo W, Chen Q (2013) Simulating natural ventilation in and around buildings by fast fluid dynamics. Numer Heat Transfer Part A Appl 64(4):273–289CrossRef Jin M, Zuo W, Chen Q (2013) Simulating natural ventilation in and around buildings by fast fluid dynamics. Numer Heat Transfer Part A Appl 64(4):273–289CrossRef
go back to reference Kerh T, Lee JJ, Wellford LC (1998) Finite element analysis of fluid motion with an oscillating structural system. Adv Eng Softw 29(7–9):717–722CrossRef Kerh T, Lee JJ, Wellford LC (1998) Finite element analysis of fluid motion with an oscillating structural system. Adv Eng Softw 29(7–9):717–722CrossRef
go back to reference Liu W, Jin M, Chen C, You R, Chen Q (2016) Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numer Heat Transfer Part A Appl 69(7):748–762CrossRef Liu W, Jin M, Chen C, You R, Chen Q (2016) Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numer Heat Transfer Part A Appl 69(7):748–762CrossRef
go back to reference Mora L, Gadgil AJ, Wurtz E (2003) Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data. Indoor Air 13(2):77–85CrossRef Mora L, Gadgil AJ, Wurtz E (2003) Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data. Indoor Air 13(2):77–85CrossRef
go back to reference Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation
go back to reference Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15(10):1787–1806MATHCrossRef Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15(10):1787–1806MATHCrossRef
go back to reference Pelletier D, Garon A, Camarero R (1991) Finite element method for computing turbulent propeller flow. AIAA J 29(1):68–75CrossRef Pelletier D, Garon A, Camarero R (1991) Finite element method for computing turbulent propeller flow. AIAA J 29(1):68–75CrossRef
go back to reference Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532MATHCrossRef Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532MATHCrossRef
go back to reference Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19(1):35–46CrossRef Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19(1):35–46CrossRef
go back to reference Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes, computational fluid dynamics unit report HTS/80/1. Imperial College Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes, computational fluid dynamics unit report HTS/80/1. Imperial College
go back to reference Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press, Addison-Wesley Publishing Co Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press, Addison-Wesley Publishing Co
go back to reference Staniforth A, Côté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119(9):2206–2223CrossRef Staniforth A, Côté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119(9):2206–2223CrossRef
go back to reference Temam R (1968) Une méthode d’approximation de la solution des équations de navier-stokes. Bull Soc Math Fr 96:115–152MATHCrossRef Temam R (1968) Une méthode d’approximation de la solution des équations de navier-stokes. Bull Soc Math Fr 96:115–152MATHCrossRef
go back to reference Van Doormal JP, Raithby GG (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transfer Appl 7(7):147–163MATH Van Doormal JP, Raithby GG (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transfer Appl 7(7):147–163MATH
go back to reference Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting incompressible fluid flows. In: National heat transfer conference, ASME, 85-HT-9 Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting incompressible fluid flows. In: National heat transfer conference, ASME, 85-HT-9
go back to reference Van Doormaal JP, Raithby GD, McDonald BH (1987) The segregated approach to predicting viscous compressible fluid flows. J Turbomach 109(2):268–277CrossRef Van Doormaal JP, Raithby GD, McDonald BH (1987) The segregated approach to predicting viscous compressible fluid flows. J Turbomach 109(2):268–277CrossRef
go back to reference Vincent S, Randrianarivelo TN, Pianet G, Caltagirone JP (2007) Local penalty methods for flows interacting with moving solids at high reynolds numbers. Comput Fluids 36(5):902–913MATHCrossRef Vincent S, Randrianarivelo TN, Pianet G, Caltagirone JP (2007) Local penalty methods for flows interacting with moving solids at high reynolds numbers. Comput Fluids 36(5):902–913MATHCrossRef
go back to reference Wang H, Wang H, Gao F, Zhou P, Zhai Z (2018) Literature review on pressure-velocity decoupling algorithms applied to built-environment CFD simulation. Build Environ 143:671–678CrossRef Wang H, Wang H, Gao F, Zhou P, Zhai Z (2018) Literature review on pressure-velocity decoupling algorithms applied to built-environment CFD simulation. Build Environ 143:671–678CrossRef
go back to reference Wang H, Zhai Z (2012) Application of coarse grid CFD on indoor environment modeling: optimizing the trade-off between grid resolution and simulation accuracy. HVAC&R Res 18(5):915–933 Wang H, Zhai Z (2012) Application of coarse grid CFD on indoor environment modeling: optimizing the trade-off between grid resolution and simulation accuracy. HVAC&R Res 18(5):915–933
go back to reference Xue Y, Liu W, Zhai Z (2016) New semi-Lagrangian-based PISO method for fast and accurate indoor environment modeling. Build Environ 105:236–244CrossRef Xue Y, Liu W, Zhai Z (2016) New semi-Lagrangian-based PISO method for fast and accurate indoor environment modeling. Build Environ 105:236–244CrossRef
go back to reference Yin R, Chow WK (2003) Comparison of four algorithms for solving pressure-velocity linked equations in simulating atrium fire. Int J Arch Sci 4(1):24–35 Yin R, Chow WK (2003) Comparison of four algorithms for solving pressure-velocity linked equations in simulating atrium fire. Int J Arch Sci 4(1):24–35
go back to reference Zaparoli EL (2011) A comparative CFD analysis: penalty method (PM), pressure poisson equation (PPE) and the coupled formulation (PPE + PM). In: The 21st Brazilian congress of mechanical engineering Zaparoli EL (2011) A comparative CFD analysis: penalty method (PM), pressure poisson equation (PPE) and the coupled formulation (PPE + PM). In: The 21st Brazilian congress of mechanical engineering
go back to reference Zuo W, Chen Q (2009) Real-time or faster-than-real-time simulation of airflow in buildings. Indoor Air 19(1):33–44CrossRef Zuo W, Chen Q (2009) Real-time or faster-than-real-time simulation of airflow in buildings. Indoor Air 19(1):33–44CrossRef
go back to reference Zuo W, Hu J, Chen Q (2010) Improvements on FFD modeling by using different numerical schemes. Numer Heat Transfer Part B Fundam 58(1):1–16CrossRef Zuo W, Hu J, Chen Q (2010) Improvements on FFD modeling by using different numerical schemes. Numer Heat Transfer Part B Fundam 58(1):1–16CrossRef
go back to reference Zuo W, Jin M, Chen Q (2012) Reduction of numerical diffusion in the FFD model. Eng Appl Comput Fluid Mech 6(2):234–247 Zuo W, Jin M, Chen Q (2012) Reduction of numerical diffusion in the FFD model. Eng Appl Comput Fluid Mech 6(2):234–247
Metadata
Title
Solve Case
Author
Zhiqiang (John) Zhai
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9820-0_8

Premium Partners