Skip to main content
Top

2018 | OriginalPaper | Chapter

6. Some Observations on the Physics of Stringed Instruments

Author : Nicholas Giordano

Published in: Springer Handbook of Systematic Musicology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We provide a general introduction to stringed instruments, focusing on the piano, guitar, and violin. These are representative of instruments in which the strings are excited by striking (the piano), plucking (the guitar), and bowing (the violin). We begin by discussing, in a general way, the strings and soundboards, and how these couple to the surrounding air to generate sound. Important features specific to these instruments are then discussed, with particular attention to the different ways the strings are set into motion, key differences in the way the soundboards vibrate, and the effects of these differences on the resulting musical tones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
6.1
go back to reference L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985) L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985)
6.2
go back to reference N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRef N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRef
6.3
go back to reference R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin 2008) R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin 2008)
6.5
go back to reference T.D. Rossing (Ed.): The Science of String Instruments (Springer, New York 2010) T.D. Rossing (Ed.): The Science of String Instruments (Springer, New York 2010)
6.6
go back to reference N.J. Giordano: Physics of the Piano (Oxford University Press, Oxford 2010)MATH N.J. Giordano: Physics of the Piano (Oxford University Press, Oxford 2010)MATH
6.7
go back to reference A. Chaigne, J. Kergomard: Acoustique des Instruments de Musique (Belin, Paris 2010) A. Chaigne, J. Kergomard: Acoustique des Instruments de Musique (Belin, Paris 2010)
6.8
go back to reference A. Chaigne: On the use of finite differences for musical synthesis. Application to plucked string instruments, J. Acoustique 5, 181–211 (1992) A. Chaigne: On the use of finite differences for musical synthesis. Application to plucked string instruments, J. Acoustique 5, 181–211 (1992)
6.9
go back to reference A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. Physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95, 1112–1118 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. Physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95, 1112–1118 (1994)CrossRef
6.10
go back to reference A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters, J. Acoust. Soc. Am. 95, 1631–1640 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters, J. Acoust. Soc. Am. 95, 1631–1640 (1994)CrossRef
6.11
go back to reference J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano, J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano, J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef
6.12
go back to reference N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102, 1159–1168 (1997)CrossRef N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102, 1159–1168 (1997)CrossRef
6.13
go back to reference W. Strutt (Lord Rayleigh): Theory of Sound (Dover, New York 1945) W. Strutt (Lord Rayleigh): Theory of Sound (Dover, New York 1945)
6.14
go back to reference E. Bechache, A. Chaigne, G. Deveraux, P. Joly: Numerical simulation of a guitar, Comput. Struct. 83, 107–126 (2005)MathSciNetCrossRef E. Bechache, A. Chaigne, G. Deveraux, P. Joly: Numerical simulation of a guitar, Comput. Struct. 83, 107–126 (2005)MathSciNetCrossRef
6.15
go back to reference A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing, J. Acoust. Soc. Am. 123, 2401–2406 (2008)CrossRef A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing, J. Acoust. Soc. Am. 123, 2401–2406 (2008)CrossRef
6.16
go back to reference A. Mamou-mani, J. Frelat, C. Besaniou: Prestressed soundboards: Analytical approach using simple systems including geometric nonlinearity, Acta Acoust. united Acust. 95, 915–928 (2009)CrossRef A. Mamou-mani, J. Frelat, C. Besaniou: Prestressed soundboards: Analytical approach using simple systems including geometric nonlinearity, Acta Acoust. united Acust. 95, 915–928 (2009)CrossRef
6.17
go back to reference A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards, J. Acoust. Soc. Am. 133, 2456–2466 (2013)CrossRef A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards, J. Acoust. Soc. Am. 133, 2456–2466 (2013)CrossRef
6.18
go back to reference P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, Princeton 1968) P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, Princeton 1968)
6.19
go back to reference D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95, 2313–2319 (1994)CrossRef D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95, 2313–2319 (1994)CrossRef
6.20
go back to reference D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef
6.21
go back to reference N. Giordano, M. Jiang: Physical modeling of the piano, Eur. J. Appl. Signal Process. 7, 926–933 (2004) N. Giordano, M. Jiang: Physical modeling of the piano, Eur. J. Appl. Signal Process. 7, 926–933 (2004)
6.22
go back to reference H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am. 99, 3286–3296 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am. 99, 3286–3296 (1996)CrossRef
6.23
go back to reference H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRef
6.24
go back to reference H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part III. Piano and scale design, J. Acoust. Soc. Am. 100, 1286–1298 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part III. Piano and scale design, J. Acoust. Soc. Am. 100, 1286–1298 (1996)CrossRef
6.25
6.26
go back to reference D.E. Hall: Piano string excitation in the case of small hammer mass, J. Acoust. Soc. Am. 79, 141–147 (1986)CrossRef D.E. Hall: Piano string excitation in the case of small hammer mass, J. Acoust. Soc. Am. 79, 141–147 (1986)CrossRef
6.27
go back to reference D.E. Hall: Piano string excitation II: General solution for a hard narrow hammer, J. Acoust. Soc. Am. 81, 535–546 (1987)CrossRef D.E. Hall: Piano string excitation II: General solution for a hard narrow hammer, J. Acoust. Soc. Am. 81, 535–546 (1987)CrossRef
6.28
go back to reference D.E. Hall: Piano string excitation III: General solution for a soft narrow hammer, J. Acoust. Soc. Am. 81, 547–555 (1987)CrossRef D.E. Hall: Piano string excitation III: General solution for a soft narrow hammer, J. Acoust. Soc. Am. 81, 547–555 (1987)CrossRef
6.29
go back to reference D.E. Hall, A. Askenfelt: Piano string excitation V: Spectra for real hammers and strings, J. Acoust. Soc. Am. 83, 1627–1638 (1987)CrossRef D.E. Hall, A. Askenfelt: Piano string excitation V: Spectra for real hammers and strings, J. Acoust. Soc. Am. 83, 1627–1638 (1987)CrossRef
6.30
go back to reference D.E. Hall: Piano string excitation VI: Nonlinear modeling, J. Acoust. Soc. Am. 92, 95–105 (1992)CrossRef D.E. Hall: Piano string excitation VI: Nonlinear modeling, J. Acoust. Soc. Am. 92, 95–105 (1992)CrossRef
6.31
go back to reference T. Yanagisawa, K. Nakamura, H. Aiko: Experimental study on force-time curve during the contact between hammer and piano string, J. Acoust. Soc. Jpn. 37, 627–632 (1981) T. Yanagisawa, K. Nakamura, H. Aiko: Experimental study on force-time curve during the contact between hammer and piano string, J. Acoust. Soc. Jpn. 37, 627–632 (1981)
6.32
go back to reference T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer, Trans. Musical Acoust. Tech. Group Meet. Acoust. Soc. Jpn. 1, 14–17 (1982) T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer, Trans. Musical Acoust. Tech. Group Meet. Acoust. Soc. Jpn. 1, 14–17 (1982)
6.33
go back to reference T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer felt, J. Acoust. Soc. Jpn. 40, 725–729 (1984) T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer felt, J. Acoust. Soc. Jpn. 40, 725–729 (1984)
6.34
go back to reference A. Stulov: Hysteretic model of the grand piano hammer felt, J. Acoust. Soc. Am. 97, 2577–2585 (1995)CrossRef A. Stulov: Hysteretic model of the grand piano hammer felt, J. Acoust. Soc. Am. 97, 2577–2585 (1995)CrossRef
6.35
go back to reference N. Giordano, J.P. Winans II: Piano hammers and their force compression characteristics: Does a power law make sense?, J. Acoust. Soc. Am. 107, 2248–2255 (2000)CrossRef N. Giordano, J.P. Winans II: Piano hammers and their force compression characteristics: Does a power law make sense?, J. Acoust. Soc. Am. 107, 2248–2255 (2000)CrossRef
6.36
go back to reference H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones, J. Acoust. Soc. Am. 34, 749–761 (1962)CrossRef H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones, J. Acoust. Soc. Am. 34, 749–761 (1962)CrossRef
6.37
go back to reference N. Giordano: Evolution of music wire and its impact on the development of the piano, Proc. Meet. Acoust. 12, 035002 (2011)CrossRef N. Giordano: Evolution of music wire and its impact on the development of the piano, Proc. Meet. Acoust. 12, 035002 (2011)CrossRef
6.38
go back to reference O.L. Railsback: Scale temperament as applied to piano tuning, J. Acoust. Soc. Am. 9, 274 (1938)CrossRef O.L. Railsback: Scale temperament as applied to piano tuning, J. Acoust. Soc. Am. 9, 274 (1938)CrossRef
6.39
go back to reference O.L. Railsback: A study of the tuning of pianos, J. Acoust. Soc. Am. 10, 86 (1938)CrossRef O.L. Railsback: A study of the tuning of pianos, J. Acoust. Soc. Am. 10, 86 (1938)CrossRef
6.40
go back to reference O.H. Schuck, R.W. Young: Observations on the vibration of piano strings, J. Acoust. Soc. Am. 15, 1–11 (1943)CrossRef O.H. Schuck, R.W. Young: Observations on the vibration of piano strings, J. Acoust. Soc. Am. 15, 1–11 (1943)CrossRef
6.41
go back to reference N. Giordano: Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance, J. Acoust. Soc. Am. 138, 2359–2366 (2015)CrossRef N. Giordano: Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance, J. Acoust. Soc. Am. 138, 2359–2366 (2015)CrossRef
6.42
go back to reference G. Weinreich: Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484 (1977)CrossRef G. Weinreich: Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484 (1977)CrossRef
6.43
go back to reference N. Giordano: Mechanical impedance of a piano soundboard, J. Acoust. Soc. Am. 103, 2128–2133 (1998)CrossRef N. Giordano: Mechanical impedance of a piano soundboard, J. Acoust. Soc. Am. 103, 2128–2133 (1998)CrossRef
6.44
go back to reference W.M. Hartmann: Signals, Sound and Sensation (AIP, Woodbury 1997) W.M. Hartmann: Signals, Sound and Sensation (AIP, Woodbury 1997)
6.45
go back to reference J.G. Roederer: Introduction to the Physics and Psychophysics of Music (Springer, New York 2008) J.G. Roederer: Introduction to the Physics and Psychophysics of Music (Springer, New York 2008)
6.46
go back to reference N.H. Fletcher: Physics and Music (Heinemann Educational Australia, Port Melbourne 1976) N.H. Fletcher: Physics and Music (Heinemann Educational Australia, Port Melbourne 1976)
6.47
go back to reference B.E. Richardson, G.W. Roberts: The adjustment of mode frequencies in a guitar: A study by means of holographic interferometry and finite element analysis. In: Proc. SMAC 83. R. Swedish Acad. Music, Stockholm (1985) pp. 285–302 B.E. Richardson, G.W. Roberts: The adjustment of mode frequencies in a guitar: A study by means of holographic interferometry and finite element analysis. In: Proc. SMAC 83. R. Swedish Acad. Music, Stockholm (1985) pp. 285–302
6.48
go back to reference M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Coupled modes of the resonance box of the guitar, J. Acoust. Soc. Am. 111, 2284–2292 (2002)CrossRef M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Coupled modes of the resonance box of the guitar, J. Acoust. Soc. Am. 111, 2284–2292 (2002)CrossRef
6.49
go back to reference G. Derveaux, A. Chaigne, P. Joly, E. Bécache: Time-domain simulation of a guitar: Model and method, J. Acoust. Soc. Am. 114, 3368–3383 (2003)CrossRef G. Derveaux, A. Chaigne, P. Joly, E. Bécache: Time-domain simulation of a guitar: Model and method, J. Acoust. Soc. Am. 114, 3368–3383 (2003)CrossRef
6.50
go back to reference J.C. Schelleng: The bowed string and the player, J. Acoust. Soc. Am. 53, 26–41 (1973)CrossRef J.C. Schelleng: The bowed string and the player, J. Acoust. Soc. Am. 53, 26–41 (1973)CrossRef
6.51
go back to reference K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, J. Acoust. Soc. Am. 101, 2903–2913 (1998)CrossRef K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, J. Acoust. Soc. Am. 101, 2903–2913 (1998)CrossRef
6.52
go back to reference K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acoust. united Acust. 88, 970–985 (2002) K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acoust. united Acust. 88, 970–985 (2002)
6.53
go back to reference C.M. Hutchins: Plate tuning for the violin maker, J. Catgut Acoust. Soc. 39, 25–32 (1983) C.M. Hutchins: Plate tuning for the violin maker, J. Catgut Acoust. Soc. 39, 25–32 (1983)
6.54
go back to reference C.M. Hutchins: Note for the violin maker in free plate mode tuning and plate stiffness, J. Catgut Acoust. Soc. 1(II), 25–30 (1989) C.M. Hutchins: Note for the violin maker in free plate mode tuning and plate stiffness, J. Catgut Acoust. Soc. 1(II), 25–30 (1989)
6.55
go back to reference C.M. Hutchins, A.S. Hopping, F.A. Saunders: Subharmonics and plate tap tones in violin acoustics, J. Acoust. Soc. Am. 32, 1443–1449 (1960)CrossRef C.M. Hutchins, A.S. Hopping, F.A. Saunders: Subharmonics and plate tap tones in violin acoustics, J. Acoust. Soc. Am. 32, 1443–1449 (1960)CrossRef
6.56
go back to reference G. Bissinger, C.M. Hutchins: Evidence for the coupling between plate and enclosed air vibrations in violins, J. Catgut Acoust. Soc. 39, 7–14 (1983) G. Bissinger, C.M. Hutchins: Evidence for the coupling between plate and enclosed air vibrations in violins, J. Catgut Acoust. Soc. 39, 7–14 (1983)
6.57
go back to reference E.V. Jansson: Admittance measurements of 25 high quality violins, Acta Acoust. united Acust. 83, 337–341 (1997) E.V. Jansson: Admittance measurements of 25 high quality violins, Acta Acoust. united Acust. 83, 337–341 (1997)
6.59
go back to reference C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Tao: Player preferences amoung new and old violins, Proc. Nat. Acad. Sci. 109, 760–763 (2012)CrossRef C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Tao: Player preferences amoung new and old violins, Proc. Nat. Acad. Sci. 109, 760–763 (2012)CrossRef
6.60
go back to reference J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today, Acta Acoust. united Acust. 90, 579–589 (2004) J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today, Acta Acoust. united Acust. 90, 579–589 (2004)
6.61
go back to reference G. Bissinger: Structural acoustics of good and bad violins, J. Acoust. Soc. Am. 124, 1764–1773 (2008)CrossRef G. Bissinger: Structural acoustics of good and bad violins, J. Acoust. Soc. Am. 124, 1764–1773 (2008)CrossRef
Metadata
Title
Some Observations on the Physics of Stringed Instruments
Author
Nicholas Giordano
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_6

Premium Partners