Skip to main content
Top

2020 | OriginalPaper | Chapter

Some Observations on Thermodynamic Basis of Pressure Continuum Condition and Consequences of Its Violation in Discretised CFD

Author : A. W. Date

Published in: 50 Years of CFD in Engineering Sciences

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CFD is concerned with solution of Navier–Stokes (NS) equations in discretised space. It is important, therefore, to ensure that the discretised equations and their solutions obey the continuum condition embedded in Stokes’s stress–strain laws for an isotropic continuum fluid. In this paper, it is shown that adherence to this condition leads to three important conceptual/algorithmic outcomes: 1. Prevention of zig-zag pressure distribution when NS equations are solved for incompressible flow of a single fluid on colocated grids. 2. Prevention of loss of volume/mass at large times when NS equations are solved for interfacial incompressible flows of multi-fluids within single-fluid formalism. 3. Evaluation of surface tension force in interfacial flows without using phenomenology embedded in the definition of the surface tension coefficient. All the above benefits are justified on the basis of a thermodynamic principle rarely invoked in discretised CFD. A few problems are solved by way of case studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This can be appreciated from the Avogadro’s number which specifies that at normal temperature and pressure, a gas will contain \(6.022 \times 10^{26}\) molecules per kmol. Thus in air, for example, there will be \(10^{16}\) molecules per \(\text {mm}^{3}\).
 
2
In [27], symbol \(\overline{\sigma } = (\sum _{i=1}^{3}\,\sigma _{xi})/3\) is used. Here, \(\overline{p} = - \overline{\sigma }\) is preferred. Both \(\overline{p}\) and q are newly introduced to serve a pedagogic purpose.
 
3
It is important to recognise that in discretised CFD, the incompressible condition (\(\bigtriangledown \,.\,V_{f}\) = 0) is defined in terms of CV face velocities \(u_{fi}\) as shown in Fig. 1. In fact, when this definition is explicitly implemented, there results the SIMPLE staggered grid procedure of Patankar and Spalding [19]. Further, \(u_{fi}\) must satisfy momentum equations. In a continuum, \(u_{fi}\) and \(u_{i}\) fields coincide but in a discretised space, it is important to distinguish them. This will become apparent in the next section.
 
4
In passing we note that in all three cases, it can be verified that the quantity q is invariant under rotation of the coordinate system or interchange of axes. This property ensures isotropy [27].
 
5
Analysis of the discretised equations presented in the next section shows that \(\lambda = 0.5\).
 
6
Equation 16 is validated in Eqs. 3943 for a two-dimensional flow.
 
7
In deriving Eq. 20, it is assumed that \(\sum \,A_{k}\,u^{'}_{fi,k} = 0\). This is consistent with the staggered grid practice [19].
 
8
Incidentally, in the literature, several different types of interpolations have been proposed. Some of these are given below by way of example.
  • Rhie and Chow [24] (1D Pressure gradient interpolation)
    $$\begin{aligned} u_{f1,e}= & {} \overline{u}_{1,e} - \frac{\Delta V}{AP^{u}}\,\left[ \frac{\partial p}{\partial x_{1}}\,|_{e} - \overline{\frac{\partial p}{\partial x_{1}}}\,|_{e} \, \right] \nonumber \\ \text{ where } \overline{\frac{\partial p}{\partial x_{1}}}\,|_{e}= & {} \frac{1}{2}\,\left[ \frac{\partial p}{\partial x_{1}}\,|_{P} + \frac{\partial p}{\partial x_{1}}\,|_{E} \,\right] \end{aligned}$$
    (33)
  • Peric [8] (1D Mom-Outflow interpolation)
    $$\begin{aligned} u_{f1,e} = \frac{1}{2}\,\left[ \frac{\sum A_{k}\,u_{1,k}}{AP^{u_{1}}}\,|_{P} + \frac{\sum A_{k}\,u_{1,k}}{AP^{u_{1}} }\,|_{E} \,\right] - \frac{\Delta V}{AP^{u}}\,\frac{\partial p}{\partial x_{1}}\,|_{e} \end{aligned}$$
    (34)
  • Thiart [34] (Power Law Scheme [20])
    $$\begin{aligned} u_{f1,e}= & {} \theta \,u_{1,P} + ( 1 - \theta )\,u_{1,E} \text{ where } \nonumber \\ \theta ( Pc_{e} )= & {} \left[ Pc_{e} - 1 + \text{ max }(0,-Pc_{e})\right] /Pc_{e} \nonumber \\+ & {} \text{ max }\left\{ 0, ( 1 - 0.1|Pc_{e}|)^{5}\right\} /Pc_{e} \end{aligned}$$
    (35)
    where cell-face Reynolds/Peclet number \(Pc_{e} = ({\rho _{m}\,u_{f1}\Delta x_{1}}/{\mu })_{e}\).
 
9
Equations 3943 justify the assertion made in Eqs. 15 and 16 for a two-dimensional flow.
 
10
This is unlike the staggered grid practice in which the mass error is estimated from discretised version of Eq. 1.
 
11
Incidentally, the superficial viscosity is now evaluated as \(\mu _{m} = F\,\mu _{a} + ( 1 - F )\,\mu _{b}\).
 
12
In all problems, the convective terms are discretised using a Total Variation Diminishing (TVD) scheme [14] to minimise interface smearing around \(F = 0.5\). Implementation details are given in [17].
 
13
Volume error is defined as
$$\begin{aligned} \text{ Error }\,(t) = \left( \sum \,F_{i,j}\,\Delta V_{i,j}\right) / \left( \sum \,F^{0}_{i,j}\,\Delta V_{i,j}\right) \end{aligned}$$
(72)
where \(F^{0}\) is the initial F-distribution at \(t = 0\) and \(\Delta V_{i,j}\) is the volume of the cell surrounding node (ij).
 
14
This ignores the fact that \(\sigma \) is essentially a property of a specified fluid pair (ab).
 
Literature
1.
go back to reference Andrillon, Y., & Alessandrini, B. (2004). A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface flow. Journal of Marine Science and Technology, 8, 159–168. Andrillon, Y., & Alessandrini, B. (2004). A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface flow. Journal of Marine Science and Technology, 8, 159–168.
2.
go back to reference Daly, B. J. (1969). Numerical study of the effect of surface tension on interface instability. Physics of Fluids, 17(7), 1340–1354.CrossRef Daly, B. J. (1969). Numerical study of the effect of surface tension on interface instability. Physics of Fluids, 17(7), 1340–1354.CrossRef
3.
go back to reference Date, A. W. (1998). Solution of Navier-Stokes equations on non-staggered grids at all speeds. Numerical Heat Transfer, Part B, 33, 451.CrossRef Date, A. W. (1998). Solution of Navier-Stokes equations on non-staggered grids at all speeds. Numerical Heat Transfer, Part B, 33, 451.CrossRef
4.
go back to reference Date, A. W. (2002). SIMPLE procedure on structured and unstructured meshes with collocated variables. In Proceedings of the 12th International Heat Transfer Conference, Grenoble, France. Date, A. W. (2002). SIMPLE procedure on structured and unstructured meshes with collocated variables. In Proceedings of the 12th International Heat Transfer Conference, Grenoble, France.
5.
go back to reference Date, A. W. (2004). Fluid dynamic view of pressure checker-boarding problem and smoothing pressure correction on meshes with collocated variables. International Journal of Heat and Mass Transfer, 48, 4885–4898.MATH Date, A. W. (2004). Fluid dynamic view of pressure checker-boarding problem and smoothing pressure correction on meshes with collocated variables. International Journal of Heat and Mass Transfer, 48, 4885–4898.MATH
6.
go back to reference Date, A. (2005). Introduction to computational fluid dynamics. New York: Cambridge University Press. Date, A. (2005). Introduction to computational fluid dynamics. New York: Cambridge University Press.
7.
go back to reference Date, A. W. (2008). Computational fluid dynamics. In Kirk-Othmer encyclopedia of chemical technology, NY, USA. Date, A. W. (2008). Computational fluid dynamics. In Kirk-Othmer encyclopedia of chemical technology, NY, USA.
8.
go back to reference Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Springer. Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Springer.
9.
go back to reference Gerlach, D., Tomar, G., Biswas, G., & Durst, F. (2005). Comparison of volume-of-fluid methods for surface tension dominant two phase flows. International Journal of Heat and Mass Transfer, 49, 740–754. Gerlach, D., Tomar, G., Biswas, G., & Durst, F. (2005). Comparison of volume-of-fluid methods for surface tension dominant two phase flows. International Journal of Heat and Mass Transfer, 49, 740–754.
10.
go back to reference Holman, J. P. (1980). Thermodynamics (3rd ed.). Tokyo: McGraw-Hill Kogakusha. Holman, J. P. (1980). Thermodynamics (3rd ed.). Tokyo: McGraw-Hill Kogakusha.
11.
go back to reference Jagad, P. I., Puranik, B. P., & Date, A. W. (2015). A novel concept of measuring mass flow rates using flow induced stresses. SADHANA, 40(Part 5), 1555–1566. Jagad, P. I., Puranik, B. P., & Date, A. W. (2015). A novel concept of measuring mass flow rates using flow induced stresses. SADHANA, 40(Part 5), 1555–1566.
12.
go back to reference Jun, L., & Spalding, D. B. (1988). Numerical simulation of flows with moving interfaces. Physico-Chemical Hydrodynamics, 10, 625–637. Jun, L., & Spalding, D. B. (1988). Numerical simulation of flows with moving interfaces. Physico-Chemical Hydrodynamics, 10, 625–637.
13.
go back to reference Karki, K. C., & Patankar, S. V. (1988). A pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. In AIAA 26th Aerospace Science Meeting, Paper No AIAA-88-0058, Nevada, USA. Karki, K. C., & Patankar, S. V. (1988). A pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. In AIAA 26th Aerospace Science Meeting, Paper No AIAA-88-0058, Nevada, USA.
14.
go back to reference Lin, C. H., & Lin, C. A. (1997). Simple high-order bounded convection scheme to model discontinuities. AIAA Journal, 35, 563–565. Lin, C. H., & Lin, C. A. (1997). Simple high-order bounded convection scheme to model discontinuities. AIAA Journal, 35, 563–565.
15.
go back to reference Martin, J. C., & Moyce, W. J. (1952). An experimental study of collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244, 312–324. Martin, J. C., & Moyce, W. J. (1952). An experimental study of collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244, 312–324.
16.
go back to reference Mason, M. L., Putnam, L. E., & Re, R. J. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. NASA Technical Paper, 1704. Mason, M. L., Putnam, L. E., & Re, R. J. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. NASA Technical Paper, 1704.
17.
go back to reference Nandi, K., & Date, A. W. (2009). Formulation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3217–3224.CrossRef Nandi, K., & Date, A. W. (2009). Formulation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3217–3224.CrossRef
18.
go back to reference Nandi, K., & Date, A. W. (2009). Validation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3225–3234.CrossRef Nandi, K., & Date, A. W. (2009). Validation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3225–3234.CrossRef
19.
go back to reference Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787.CrossRef Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787.CrossRef
20.
go back to reference Patankar, S. V. (1981). Numerical fluid flow and heat transfer. NewYork: Hemisphere Publ Co.MATH Patankar, S. V. (1981). Numerical fluid flow and heat transfer. NewYork: Hemisphere Publ Co.MATH
21.
go back to reference Perry, R. H., & Chilton, C. H. Chemical engineers handbook (5th ed.). Tokyo: McGraw-Hill Kogakusha. Perry, R. H., & Chilton, C. H. Chemical engineers handbook (5th ed.). Tokyo: McGraw-Hill Kogakusha.
22.
go back to reference Pimpalnerkar, S., Kulkarni, M., & Date, A. W. (2005). Solution of transport equations on unstructured meshes with cell-centered collocated variables. Part II: Applications. International Journal of Heat and Mass Transfer, 48, 1128–1136. Pimpalnerkar, S., Kulkarni, M., & Date, A. W. (2005). Solution of transport equations on unstructured meshes with cell-centered collocated variables. Part II: Applications. International Journal of Heat and Mass Transfer, 48, 1128–1136.
23.
go back to reference Ray, S., & Date, A. W. (2003). Friction and heat transfer characteristics of flow through square duct with twisted tape insert. International Journal of Heat and Mass Transfer, 46, 889–902. Ray, S., & Date, A. W. (2003). Friction and heat transfer characteristics of flow through square duct with twisted tape insert. International Journal of Heat and Mass Transfer, 46, 889–902.
24.
go back to reference Rhie, C. M., & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21, 1525.CrossRef Rhie, C. M., & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21, 1525.CrossRef
25.
go back to reference Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671–691.MathSciNetCrossRef Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671–691.MathSciNetCrossRef
26.
go back to reference Salih, A., & Ghosh Moulic, S. (2006). Simulation of Rayleigh-Taylor instability using level-set method. In 33rd National and 3rd International Conference on Fluid Mechanics and Fluid Power (p. 2006), Paper no 1303. India: IIT Bombay. Salih, A., & Ghosh Moulic, S. (2006). Simulation of Rayleigh-Taylor instability using level-set method. In 33rd National and 3rd International Conference on Fluid Mechanics and Fluid Power (p. 2006), Paper no 1303. India: IIT Bombay.
27.
go back to reference Sclichting. (1968). Boundary layer theory (English trans. Kestin J.). McGraw-Hill. Sclichting. (1968). Boundary layer theory (English trans. Kestin J.). McGraw-Hill.
28.
go back to reference Shih, T. M., & Ren, A. L. (1984). Primitive variable formulations using non-staggered grid. Numerical Heat Transfer, 7, 413–428. Shih, T. M., & Ren, A. L. (1984). Primitive variable formulations using non-staggered grid. Numerical Heat Transfer, 7, 413–428.
29.
go back to reference Shyy, W. (1994). Computational modeling for fluid flow and interfacial transport. Amsterdam: Elsevier. Shyy, W. (1994). Computational modeling for fluid flow and interfacial transport. Amsterdam: Elsevier.
30.
go back to reference Soni, B., & Date, A. W. (2011). Prediction of turbulent heat transfer in radially outward flow in twisted-tape inserted tube rotating in orthogonal mode. Computational Thermal Science, 3, 49–61. Soni, B., & Date, A. W. (2011). Prediction of turbulent heat transfer in radially outward flow in twisted-tape inserted tube rotating in orthogonal mode. Computational Thermal Science, 3, 49–61.
31.
go back to reference Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for capturing solutions to incompressible two-phase flow. Journal of Computational Physics,114, 146–159. Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for capturing solutions to incompressible two-phase flow. Journal of Computational Physics,114, 146–159.
32.
go back to reference Sussman, M., Smith, K. M., Hussaini, M. Y., Ohta, M., & Zhi-Wei, R. (2007). A sharp interface method for incompressible two-phase flows. Journal of Computational Physics, 221, 469–505. Sussman, M., Smith, K. M., Hussaini, M. Y., Ohta, M., & Zhi-Wei, R. (2007). A sharp interface method for incompressible two-phase flows. Journal of Computational Physics, 221, 469–505.
33.
go back to reference Takahira, H., Horiuchi, T., & Banerjee, S. (2004). An improved three dimensional level set method for gas-liquid two-phase flows. Transaction of the ASME Journal of Fluids Engineering, 126, 578–585.CrossRef Takahira, H., Horiuchi, T., & Banerjee, S. (2004). An improved three dimensional level set method for gas-liquid two-phase flows. Transaction of the ASME Journal of Fluids Engineering, 126, 578–585.CrossRef
34.
go back to reference Thiart, G. D. (1990). Improved finite-difference formulation for convective-diffusive problems with SIMPLEN algorithm. Numerical Heat Transfer, Part B, 18, 81–95. Thiart, G. D. (1990). Improved finite-difference formulation for convective-diffusive problems with SIMPLEN algorithm. Numerical Heat Transfer, Part B, 18, 81–95.
35.
go back to reference van Leer, B. (1977). Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. Journal of Computational Physics, 23, 276–283.CrossRef van Leer, B. (1977). Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. Journal of Computational Physics, 23, 276–283.CrossRef
36.
go back to reference Warsi, Z. U. A. (1993). Fluid dynamics—Theoretical and computational approaches. London: CRC Press.MATH Warsi, Z. U. A. (1993). Fluid dynamics—Theoretical and computational approaches. London: CRC Press.MATH
Metadata
Title
Some Observations on Thermodynamic Basis of Pressure Continuum Condition and Consequences of Its Violation in Discretised CFD
Author
A. W. Date
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_2

Premium Partners