Skip to main content
Top

2024 | OriginalPaper | Chapter

Some Remarks About the Link Between the Fisher Information and Landau or Landau-Fermi-Dirac Entropy Dissipation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present in this work variants of existing estimates for the Landau or Landau-Fermi-Dirac entropy dissipation, in terms of Fisher information, in the hard potential case. The specificity of those variants is that the entropy is never used in the estimates (in order to control possible concentrations on a zero measure set). The proofs are significantly simplified with respect to previous papers on the subject.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alonso, R., Bagland, V., Lods, B.: Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials. J. Differential Equations 270, 596–663 (2021)MathSciNetCrossRef Alonso, R., Bagland, V., Lods, B.: Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials. J. Differential Equations 270, 596–663 (2021)MathSciNetCrossRef
2.
go back to reference R. Alonso, V. Bagland, L. Desvillettes, and B. Lods: About the use of entropy production for the Landau-Fermi-Dirac equation. Journal of Statistical Physics 183, (2021) R. Alonso, V. Bagland, L. Desvillettes, and B. Lods: About the use of entropy production for the Landau-Fermi-Dirac equation. Journal of Statistical Physics 183, (2021)
3.
go back to reference Alonso, R., Bagland, V., Desvillettes, L., Lods, B.: About the Landau-Fermi-Dirac equation with moderately soft potentials. Arch. Rational Mech. Anal 244, 779–875 (2022)MathSciNetCrossRef Alonso, R., Bagland, V., Desvillettes, L., Lods, B.: About the Landau-Fermi-Dirac equation with moderately soft potentials. Arch. Rational Mech. Anal 244, 779–875 (2022)MathSciNetCrossRef
4.
go back to reference Bagland, V.: Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Proc. Roy. Soc. Edinburgh Sect. A. 134, 415–447 (2004)MathSciNetCrossRef Bagland, V.: Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Proc. Roy. Soc. Edinburgh Sect. A. 134, 415–447 (2004)MathSciNetCrossRef
5.
go back to reference Carrillo, J.A., Laurençot, Ph., Rosado, J.: Fermi-Dirac-Fokker-Planck equation: well-posedness and long-time asymptotics. J. Differential Equations 247, 2209–2234 (2009)MathSciNetCrossRef Carrillo, J.A., Laurençot, Ph., Rosado, J.: Fermi-Dirac-Fokker-Planck equation: well-posedness and long-time asymptotics. J. Differential Equations 247, 2209–2234 (2009)MathSciNetCrossRef
6.
go back to reference Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)MathSciNetCrossRef
7.
go back to reference Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)MathSciNetCrossRef
8.
go back to reference Carrapatoso, K., Desvillettes, L., He, L.: Estimates for the large time behavior of the Landau equation in the Coulomb case. Arch. Rational Mech. Anal. 224, 381–420 (2017)MathSciNetCrossRef Carrapatoso, K., Desvillettes, L., He, L.: Estimates for the large time behavior of the Landau equation in the Coulomb case. Arch. Rational Mech. Anal. 224, 381–420 (2017)MathSciNetCrossRef
9.
go back to reference Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases. Cambridge Univ. Press, London (1952) Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases. Cambridge Univ. Press, London (1952)
10.
go back to reference Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Commun. Math. Phys. 123(4), 687–702 (1989)MathSciNetCrossRef Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Commun. Math. Phys. 123(4), 687–702 (1989)MathSciNetCrossRef
11.
go back to reference Desvillettes, L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269, 1359–1403 (2015)MathSciNetCrossRef Desvillettes, L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269, 1359–1403 (2015)MathSciNetCrossRef
12.
go back to reference L. Desvillettes. Entropy dissipation estimates for the Landau equation: General cross sections. Proceedings of the conference PSPDE III, Braga, 2014 L. Desvillettes. Entropy dissipation estimates for the Landau equation: General cross sections. Proceedings of the conference PSPDE III, Braga, 2014
13.
go back to reference L. Desvillettes. Structure entropique du noyau de collision de Landau, Proceedings of the seminar Laurent Schwartz - EDP et applications (2014-2015), Exp. No. 14 L. Desvillettes. Structure entropique du noyau de collision de Landau, Proceedings of the seminar Laurent Schwartz - EDP et applications (2014-2015), Exp. No. 14
14.
go back to reference L. Desvillettes. About Boltzmann’s H Theorem for Landau Equation (Autour du Théorème H de Boltzmann), Proceedings of the seminar Laurent Schwartz - EDP et applications (2019-2020), Exp. No. 9 L. Desvillettes. About Boltzmann’s H Theorem for Landau Equation (Autour du Théorème H de Boltzmann), Proceedings of the seminar Laurent Schwartz - EDP et applications (2019-2020), Exp. No. 9
15.
go back to reference L. Desvillettes, L.-B. He and J.-C. Jiang. A new monotonicity formula for the spatially homogeneous Landau equation with Coulomb potential and its applications. Preprint arXiv:2011.00386. Accepted for publication in the J. European Math. Society L. Desvillettes, L.-B. He and J.-C. Jiang. A new monotonicity formula for the spatially homogeneous Landau equation with Coulomb potential and its applications. Preprint arXiv:​2011.​00386. Accepted for publication in the J. European Math. Society
16.
go back to reference Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cercignani’s conjecture for the Boltzmann equation. Kinet. Relat. Models 4, 277–294 (2011)MathSciNetCrossRef Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cercignani’s conjecture for the Boltzmann equation. Kinet. Relat. Models 4, 277–294 (2011)MathSciNetCrossRef
17.
go back to reference L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness. Commun. Partial Differential Equations, 25, n.1-2 (2000), 179-259 L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness. Commun. Partial Differential Equations, 25, n.1-2 (2000), 179-259
18.
go back to reference L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications. Commun. Partial Differential Equations, 25, n.1-2 (2000), 261-298 L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications. Commun. Partial Differential Equations, 25, n.1-2 (2000), 261-298
19.
go back to reference Golse, F., Gualdani, M.-P., Imbert, C., Vasseur, A.: Partial Regularity in Time for the Space-Homogeneous Landau equation with Coulomb Potential. Ann. Sci. Ecole Normale Supérieure 55(6), 1575–1611 (2022)MathSciNetCrossRef Golse, F., Gualdani, M.-P., Imbert, C., Vasseur, A.: Partial Regularity in Time for the Space-Homogeneous Landau equation with Coulomb Potential. Ann. Sci. Ecole Normale Supérieure 55(6), 1575–1611 (2022)MathSciNetCrossRef
21.
go back to reference Lifschitz, E.M., Pitaevskii, L.P.: Physical kinetics. Perg. Press, Oxford (1981) Lifschitz, E.M., Pitaevskii, L.P.: Physical kinetics. Perg. Press, Oxford (1981)
22.
go back to reference Lu, X., Wennberg, B.: On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles. Arch. Ration. Mech. Anal. 168, 1–34 (2003)MathSciNetCrossRef Lu, X., Wennberg, B.: On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles. Arch. Ration. Mech. Anal. 168, 1–34 (2003)MathSciNetCrossRef
23.
go back to reference Toscani, G.: Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math. 57(3), 521–541 (1999)MathSciNetCrossRef Toscani, G.: Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math. 57(3), 521–541 (1999)MathSciNetCrossRef
24.
go back to reference Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Statist. Phys. 98(5–6), 1279–1309 (2000)MathSciNetCrossRef Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Statist. Phys. 98(5–6), 1279–1309 (2000)MathSciNetCrossRef
25.
go back to reference Wu, K.-C.: Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal. 266, 3134–3155 (2014)MathSciNetCrossRef Wu, K.-C.: Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal. 266, 3134–3155 (2014)MathSciNetCrossRef
Metadata
Title
Some Remarks About the Link Between the Fisher Information and Landau or Landau-Fermi-Dirac Entropy Dissipation
Author
Laurent Desvillettes
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_3

Premium Partner