Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Some Revisions of Fatigue Crack Growth Characteristics of Rubber

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fatigue crack growth (FCG) characteristic of rubber materials is a very important factor in determining the durability of the rubber products. Slight variations in compounding ingredients, mixing and the curing process or even in the loading conditions and several physical factors have an impact on the final FCG behaviour of rubber vulcanisates. Thus, possible inaccuracies in the experimentally determined FCG characteristics can have direct consequences on the development of durable rubber compounds. Therefore, the aim of this work is focused on the experimental validation of the FCG characteristics of rubber in comparison with the recently customary theoretical background and functions describing the relationship between the FCG rate and the tearing energy. From the literature survey, the weak points directly influencing the accuracy of the FCG characteristics in the experimental approach were identified. The first weak point is the transient point or discontinuity of the FCG characteristics within the region of the stable FCG. To follow on, a visible deviation of the experimentally determined data within the region of the stable FCG from the theoretical function is necessary to be validated. FCG analyses of plane strain tension samples based on ethylene propylene diene monomer (EPDM) rubber filled with a varied content of carbon black were performed using a Tear and Fatigue Analyzer (TFA©, Coesfeld GmbH & Co. KG, Germany). The FCG characteristics were plotted for a broad range of tearing energies. The intrinsic strength and the ultimate strength were determined. The region of the stable FCG was studied in detail. The continuous function of the stable FCG within the region was found, and thus, the presence of a transient point was refuted. Moreover, a specific equation was validated to fit the data into the region of the stable FCG compared to a previously preferred power-law with a higher accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gent AN, Lindley PB, Thomas AG (1964) Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J Appl Polym Sci:455–466 Gent AN, Lindley PB, Thomas AG (1964) Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J Appl Polym Sci:455–466
2.
go back to reference Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10:291–318CrossRef Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10:291–318CrossRef
3.
go back to reference Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9:1233–1251CrossRef Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9:1233–1251CrossRef
4.
go back to reference Lake GJ, Thomas AG (1965) The strength of highly elastic materials. Proc R Soc Lond A 300:108–119 Lake GJ, Thomas AG (1965) The strength of highly elastic materials. Proc R Soc Lond A 300:108–119
5.
go back to reference Gent AN, Mars WV (2013) Strength of elastomers, science and technology of rubber, 4th edn. Academic Press, Boston, pp 473–516 Gent AN, Mars WV (2013) Strength of elastomers, science and technology of rubber, 4th edn. Academic Press, Boston, pp 473–516
6.
go back to reference Thomas AG (1955) Rupture of rubber. II. The strain concentration at an incision. J Appl Polym Sci 18:177–188CrossRef Thomas AG (1955) Rupture of rubber. II. The strain concentration at an incision. J Appl Polym Sci 18:177–188CrossRef
7.
go back to reference Greensmith HW, Thomas AG (1955) Rupture of rubber. III. Determination of tear properties. J Appl Polym Sci 18:189–200CrossRef Greensmith HW, Thomas AG (1955) Rupture of rubber. III. Determination of tear properties. J Appl Polym Sci 18:189–200CrossRef
9.
go back to reference Lindley PB (1974) Non-relaxing crack growth and fatigue in a non-crystallizing rubber. Rubber Chem Technol 47(5):1253–1264CrossRef Lindley PB (1974) Non-relaxing crack growth and fatigue in a non-crystallizing rubber. Rubber Chem Technol 47(5):1253–1264CrossRef
10.
go back to reference Young DG (1986) Fatigue crack propagation in elastomer compounds: effects of strain rate, temperature, strain level and oxidation. Rubber Chem Technol 59:809–825 Young DG (1986) Fatigue crack propagation in elastomer compounds: effects of strain rate, temperature, strain level and oxidation. Rubber Chem Technol 59:809–825
11.
go back to reference Ghosh P, Stoček R, Gehde M, Mukhopadhyay R, Krishnakumar R (2014) Investigation of fatigue crack growth characteristics of NR/BR blend based Tyre tread compounds. Int J Fract 188:9–21CrossRef Ghosh P, Stoček R, Gehde M, Mukhopadhyay R, Krishnakumar R (2014) Investigation of fatigue crack growth characteristics of NR/BR blend based Tyre tread compounds. Int J Fract 188:9–21CrossRef
12.
go back to reference Stoček R, Horst T, Reincke K (2017) Tearing energy as fracture mechanical quantity for elastomers. In: Stöckelhuber KW, Das A, Klüppel M (eds) Designing of elastomer nanocomposites: from theory to applications. Advances in polymer science, vol 275. Springer, New York, pp 361–398CrossRef Stoček R, Horst T, Reincke K (2017) Tearing energy as fracture mechanical quantity for elastomers. In: Stöckelhuber KW, Das A, Klüppel M (eds) Designing of elastomer nanocomposites: from theory to applications. Advances in polymer science, vol 275. Springer, New York, pp 361–398CrossRef
13.
go back to reference Hintze C, Stoček R, Horst T, Jurk R, Wiessner S, Heinrich G (2014) Dynamic behavior of short aramid fiber-filled elastomer composites. Polym Eng Sci 54:2958–2964CrossRef Hintze C, Stoček R, Horst T, Jurk R, Wiessner S, Heinrich G (2014) Dynamic behavior of short aramid fiber-filled elastomer composites. Polym Eng Sci 54:2958–2964CrossRef
14.
go back to reference Ghosh P, Mukhopadhyay R, Stocek R (2016) Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue analyser. Kautschuk-Gummi-Kunststoffe 69(6):53–55 Ghosh P, Mukhopadhyay R, Stocek R (2016) Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue analyser. Kautschuk-Gummi-Kunststoffe 69(6):53–55
15.
go back to reference Stoček R, Stěnička M, Zádrapa P (2020) Future trends in predicting the complex fracture behaviour of rubber materials. Contin Mech Thermodyn. Article in press Stoček R, Stěnička M, Zádrapa P (2020) Future trends in predicting the complex fracture behaviour of rubber materials. Contin Mech Thermodyn. Article in press
16.
go back to reference Kaang S, Woong JY, Huh YI, Lee WJ, Im WB (2006) A test method to measure fatigue crack growth rate of rubbery materials. Polym Test 25(3):347–352CrossRef Kaang S, Woong JY, Huh YI, Lee WJ, Im WB (2006) A test method to measure fatigue crack growth rate of rubbery materials. Polym Test 25(3):347–352CrossRef
17.
go back to reference Eisele U, Kelbch SA, Engels H-W (1992) The tear analyzer – a new tool for quantitative measurements of the dynamic crack growth of elastomers. KGK 45:1064–1069 Eisele U, Kelbch SA, Engels H-W (1992) The tear analyzer – a new tool for quantitative measurements of the dynamic crack growth of elastomers. KGK 45:1064–1069
18.
go back to reference Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRef Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRef
19.
go back to reference Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–53CrossRef Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–53CrossRef
20.
go back to reference Stoček R, Heinrich G, Gehde M, Kipscholl R (2013) Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: Grellmann W et al (eds) Fracture mechanics & statistical mech., LNACM 70, pp 269–301 Stoček R, Heinrich G, Gehde M, Kipscholl R (2013) Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: Grellmann W et al (eds) Fracture mechanics & statistical mech., LNACM 70, pp 269–301
21.
go back to reference Stoček R, Heinrich G, Gehde M, Rauschenbach A (2012) Investigations about notch length in pure-shear test specimen for exact analysis of crack propagation in elastomers. J Plast Technol 01:2–22 Stoček R, Heinrich G, Gehde M, Rauschenbach A (2012) Investigations about notch length in pure-shear test specimen for exact analysis of crack propagation in elastomers. J Plast Technol 01:2–22
22.
go back to reference Lake GJ, Lindley PB (1964) Ozone cracking, flex cracking and fatigue of rubber. 1. Rubber J 146(10):24–30 Lake GJ, Lindley PB (1964) Ozone cracking, flex cracking and fatigue of rubber. 1. Rubber J 146(10):24–30
23.
go back to reference Lake GJ, Lindley PB (1964) Ozone cracking, flex cracking and fatigue of rubber. 2. Rubber J 146(11):30–36 Lake GJ, Lindley PB (1964) Ozone cracking, flex cracking and fatigue of rubber. 2. Rubber J 146(11):30–36
24.
go back to reference Bhowmick AK (1988) Threshold fracture of elastomers. J Macromol Sci Polym Rev 28:339–370CrossRef Bhowmick AK (1988) Threshold fracture of elastomers. J Macromol Sci Polym Rev 28:339–370CrossRef
Metadata
Title
Some Revisions of Fatigue Crack Growth Characteristics of Rubber
Author
R. Stoček
Copyright Year
2021
DOI
https://doi.org/10.1007/12_2020_72

Premium Partners