Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

16-05-2020

SoS-RPL: Securing Internet of Things Against Sinkhole Attack Using RPL Protocol-Based Node Rating and Ranking Mechanism

Authors: Mina Zaminkar, Reza Fotohi

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Through the Internet of Things (IoT) the internet scope is established by the integration of physical things to classify themselves into mutual things. A physical thing can be created by this inventive perception to signify itself in the digital world. Regarding the physical things that are related to the internet, it is worth noting that considering numerous theories and upcoming predictions, they mostly require protected structures, moreover, they are at risk of several attacks. IoTs are endowed with particular routing disobedience called sinkhole attack owing to their distributed features. In these attacks, a malicious node broadcasts illusive information regarding the routings to impose itself as a route towards specific nodes for the neighboring nodes and thus, attract data traffic. RPL (IP-V6 routing protocol for efficient and low-energy networks) is a standard routing protocol which is mainly employed in sensor networks and IoT. This protocol is called SoS-RPL consisting of two key sections of the sinkhole detection. In the first section rating and ranking the nodes in the RPL is carried out based on distance measurements. The second section is in charge of discovering the misbehavior sources within the IoT network through, the Average Packet Transmission RREQ (APT-RREQ). Here, the technique is assessed through wide simulations performed within the NS-3 environment. Based on the results of the simulation, it is indicated that the IoT network behavior metrics are enhanced based on the detection rate, false-negative rate, false-positive rate, packet delivery rate, maximum throughput, and packet loss rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Airehrour, D., Gutierrez, J. A., & Ray, S. K. (2019). SecTrust-RPL: A secure trust-aware RPL routing protocol for Internet of Things. Future Generation Computer Systems, 93, 860–876.CrossRef Airehrour, D., Gutierrez, J. A., & Ray, S. K. (2019). SecTrust-RPL: A secure trust-aware RPL routing protocol for Internet of Things. Future Generation Computer Systems, 93, 860–876.CrossRef
2.
go back to reference Thigale, S. B., Pandey, R., & Dhotre, V. A. (2020). Robust routing for secure communication in Internet of Things enabled networks. In Techno-Societal 2018 (pp. 79–86). Cham: Springer. Thigale, S. B., Pandey, R., & Dhotre, V. A. (2020). Robust routing for secure communication in Internet of Things enabled networks. In Techno-Societal 2018 (pp. 79–86). Cham: Springer.
3.
go back to reference Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection in Internet of Things. Journal of Network and Computer Applications, 84, 25–37.CrossRef Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection in Internet of Things. Journal of Network and Computer Applications, 84, 25–37.CrossRef
4.
go back to reference Faghihniya, M. J., Hosseini, S. M., & Tahmasebi, M. (2017). Security upgrade against RREQ flooding attack by using balance index on vehicular ad hoc network. Wireless Networks, 23(6), 1863–1874.CrossRef Faghihniya, M. J., Hosseini, S. M., & Tahmasebi, M. (2017). Security upgrade against RREQ flooding attack by using balance index on vehicular ad hoc network. Wireless Networks, 23(6), 1863–1874.CrossRef
5.
go back to reference Pacheco, J., & Hariri, S. (2018). Anomaly behavior analysis for IoT sensors. Transactions on Emerging Telecommunications Technologies, 29(4), e3188.CrossRef Pacheco, J., & Hariri, S. (2018). Anomaly behavior analysis for IoT sensors. Transactions on Emerging Telecommunications Technologies, 29(4), e3188.CrossRef
6.
go back to reference Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S., et al. (2018). Internet-of-Things security and vulnerabilities: Taxonomy, challenges, and practice. Journal of Hardware and Systems Security, 2(2), 97–110.CrossRef Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S., et al. (2018). Internet-of-Things security and vulnerabilities: Taxonomy, challenges, and practice. Journal of Hardware and Systems Security, 2(2), 97–110.CrossRef
7.
go back to reference Moon, J., Jung, I. Y., & Park, J. H. (2018). IoT application protection against power analysis attack. Computers & Electrical Engineering, 67, 566–578.CrossRef Moon, J., Jung, I. Y., & Park, J. H. (2018). IoT application protection against power analysis attack. Computers & Electrical Engineering, 67, 566–578.CrossRef
8.
go back to reference Jiang, Y., Hu, A., & Huang, J. (2018). A lightweight physical-layer based security strategy for Internet of Things. Cluster Computing, 22, 1–13. Jiang, Y., Hu, A., & Huang, J. (2018). A lightweight physical-layer based security strategy for Internet of Things. Cluster Computing, 22, 1–13.
9.
go back to reference Adat, V., & Gupta, B. (2018). Security in Internet of Things: Issues, challenges, taxonomy, and architecture. Telecommunication Systems, 67(3), 423–441.CrossRef Adat, V., & Gupta, B. (2018). Security in Internet of Things: Issues, challenges, taxonomy, and architecture. Telecommunication Systems, 67(3), 423–441.CrossRef
10.
go back to reference Alamr, A. A., Kausar, F., Kim, J., & Seo, C. (2018). A secure ECC-based RFID mutual authentication protocol for internet of things. The Journal of Supercomputing, 74(9), 4281–4294.CrossRef Alamr, A. A., Kausar, F., Kim, J., & Seo, C. (2018). A secure ECC-based RFID mutual authentication protocol for internet of things. The Journal of Supercomputing, 74(9), 4281–4294.CrossRef
11.
go back to reference Deng, L., Li, D., Yao, X., Cox, D., & Wang, H. (2019). Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing, 22(4), 9889–9904.CrossRef Deng, L., Li, D., Yao, X., Cox, D., & Wang, H. (2019). Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing, 22(4), 9889–9904.CrossRef
12.
go back to reference Bhunia, S. S., & Gurusamy, M. (2017). Dynamic attack detection and mitigation in IoT using SDN. In 2017 27th International telecommunication networks and applications conference (ITNAC). 2017. IEEE. Bhunia, S. S., & Gurusamy, M. (2017). Dynamic attack detection and mitigation in IoT using SDN. In 2017 27th International telecommunication networks and applications conference (ITNAC). 2017. IEEE.
13.
go back to reference Rostampour, S., Bagheri, N., Hosseinzadeh, M., & Khademzadeh, A. (2018). A scalable and lightweight grouping proof protocol for internet of things applications. The Journal of Supercomputing, 74(1), 71–86.CrossRef Rostampour, S., Bagheri, N., Hosseinzadeh, M., & Khademzadeh, A. (2018). A scalable and lightweight grouping proof protocol for internet of things applications. The Journal of Supercomputing, 74(1), 71–86.CrossRef
14.
go back to reference Qin, T., Wang, B., Chen, R., Qin, Z., & Wang, L. (2019). IMLADS: Intelligent maintenance and lightweight anomaly detection system for Internet of Things. Sensors, 19(4), 958.CrossRef Qin, T., Wang, B., Chen, R., Qin, Z., & Wang, L. (2019). IMLADS: Intelligent maintenance and lightweight anomaly detection system for Internet of Things. Sensors, 19(4), 958.CrossRef
15.
go back to reference Hashemi, S. Y., & Aliee, F. S. (2018). Dynamic and comprehensive trust model for IoT and its integration into RPL. The Journal of Supercomputing, 75, 1–30. Hashemi, S. Y., & Aliee, F. S. (2018). Dynamic and comprehensive trust model for IoT and its integration into RPL. The Journal of Supercomputing, 75, 1–30.
16.
go back to reference Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761–768.CrossRef Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761–768.CrossRef
17.
go back to reference Jhaveri, R. H., et al. (2018). Sensitivity analysis of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc networks in industrial IoT. IEEE Access, 6, 20085–20103.CrossRef Jhaveri, R. H., et al. (2018). Sensitivity analysis of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc networks in industrial IoT. IEEE Access, 6, 20085–20103.CrossRef
18.
go back to reference Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using SDN: Methods, practices, and solutions. Arabian Journal for Science and Engineering, 42(2), 425–441.CrossRef Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using SDN: Methods, practices, and solutions. Arabian Journal for Science and Engineering, 42(2), 425–441.CrossRef
19.
go back to reference Yaseen, Q., et al. (2018). Collusion attacks mitigation in internet of things: A fog based model. Multimedia Tools and Applications, 77(14), 18249–18268.CrossRef Yaseen, Q., et al. (2018). Collusion attacks mitigation in internet of things: A fog based model. Multimedia Tools and Applications, 77(14), 18249–18268.CrossRef
20.
go back to reference Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social Internet of Things. Future Generation Computer Systems, 82, 689–697.CrossRef Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social Internet of Things. Future Generation Computer Systems, 82, 689–697.CrossRef
21.
go back to reference Yan, Q., Huang, W., Luo, X., Gong, Q., & Yu, F. R. (2018). A multi-level DDoS mitigation framework for the industrial internet of things. IEEE Communications Magazine, 56(2), 30–36.CrossRef Yan, Q., Huang, W., Luo, X., Gong, Q., & Yu, F. R. (2018). A multi-level DDoS mitigation framework for the industrial internet of things. IEEE Communications Magazine, 56(2), 30–36.CrossRef
22.
go back to reference Alshehri, M. D., & Hussain, F. K. (2019). A fuzzy security protocol for trust management in the Internet of Things (Fuzzy-IoT). Computing, 101(7), 791–818.MathSciNetCrossRef Alshehri, M. D., & Hussain, F. K. (2019). A fuzzy security protocol for trust management in the Internet of Things (Fuzzy-IoT). Computing, 101(7), 791–818.MathSciNetCrossRef
23.
go back to reference Lee, S., Lee, S., Yoo, H., Kwon, S., & Shon, T. (2018). Design and implementation of cybersecurity testbed for industrial IoT systems. The Journal of Supercomputing, 74(9), 4506–4520.CrossRef Lee, S., Lee, S., Yoo, H., Kwon, S., & Shon, T. (2018). Design and implementation of cybersecurity testbed for industrial IoT systems. The Journal of Supercomputing, 74(9), 4506–4520.CrossRef
24.
go back to reference Jan, M. A., et al. (2019). A payload-based mutual authentication scheme for Internet of Things. Future Generation Computer Systems, 92, 1028–1039.CrossRef Jan, M. A., et al. (2019). A payload-based mutual authentication scheme for Internet of Things. Future Generation Computer Systems, 92, 1028–1039.CrossRef
25.
go back to reference Fotohi, R., Firoozi Bari, S., & Yusefi, M. (2020). Securing wireless sensor networks against denial-of-sleep attacks using RSA cryptography algorithm and interlock protocol. International Journal of Communication Systems, 33(4), e4234.CrossRef Fotohi, R., Firoozi Bari, S., & Yusefi, M. (2020). Securing wireless sensor networks against denial-of-sleep attacks using RSA cryptography algorithm and interlock protocol. International Journal of Communication Systems, 33(4), e4234.CrossRef
26.
go back to reference Yavuz, F. Y., Ünal, D., & Gül, E. (2018). Deep learning for detection of routing attacks in the Internet of Things. International Journal of Computational Intelligence Systems, 12(1), 39–58.CrossRef Yavuz, F. Y., Ünal, D., & Gül, E. (2018). Deep learning for detection of routing attacks in the Internet of Things. International Journal of Computational Intelligence Systems, 12(1), 39–58.CrossRef
27.
go back to reference Fotohi, R. (2020). Securing of unmanned aerial systems (UAS) against security threats using human immune system. Reliability Engineering & System Safety, 193, 106675.CrossRef Fotohi, R. (2020). Securing of unmanned aerial systems (UAS) against security threats using human immune system. Reliability Engineering & System Safety, 193, 106675.CrossRef
28.
go back to reference Sicari, S., Rizzardi, A., Miorandi, D., & Coen-Porisini, A. (2018). Reato: Reacting to denial of service attacks in the Internet of Things. Computer Networks, 137, 37–48.CrossRef Sicari, S., Rizzardi, A., Miorandi, D., & Coen-Porisini, A. (2018). Reato: Reacting to denial of service attacks in the Internet of Things. Computer Networks, 137, 37–48.CrossRef
32.
go back to reference Jamali, S., & Fotohi, R. (2017). DAWA: Defending against wormhole attack in MANETs by using fuzzy logic and artificial immune system. The Journal of Supercomputing, 73(12), 5173–5196.CrossRef Jamali, S., & Fotohi, R. (2017). DAWA: Defending against wormhole attack in MANETs by using fuzzy logic and artificial immune system. The Journal of Supercomputing, 73(12), 5173–5196.CrossRef
33.
go back to reference Jamali, S., & Fotohi, R. (2016). Defending against wormhole attack in MANET using an artificial immune system. New Review of Information Networking, 21(2), 79–100.CrossRef Jamali, S., & Fotohi, R. (2016). Defending against wormhole attack in MANET using an artificial immune system. New Review of Information Networking, 21(2), 79–100.CrossRef
34.
go back to reference Jamali, S., Fotohi, R., & Analoui, M. (2018). An artificial immune system based method for defense against wormhole attack in mobile adhoc networks. Tabriz Journal of Electrical Engineering, 47(4), 1407–1419. Jamali, S., Fotohi, R., & Analoui, M. (2018). An artificial immune system based method for defense against wormhole attack in mobile adhoc networks. Tabriz Journal of Electrical Engineering, 47(4), 1407–1419.
Metadata
Title
SoS-RPL: Securing Internet of Things Against Sinkhole Attack Using RPL Protocol-Based Node Rating and Ranking Mechanism
Authors
Mina Zaminkar
Reza Fotohi
Publication date
16-05-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07421-z

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue