Skip to main content
Top
Published in: Neural Computing and Applications 9/2021

03-08-2020 | Original Article

Source localization in resource-constrained sensor networks based on deep learning

Authors: S. Hamed Javadi, Angela Guerrero, Abdul M. Mouazen

Published in: Neural Computing and Applications | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Source localization with a network of low-cost motes with limited processing, memory, and energy resources is considered in this paper. The state-of-the-art methods are mostly based on complicated signal processing approaches in which motes send their (processed) data to a fusion center (FC) wherein the source is localized. These methods are resource-demanding and mostly do not meet the limitations of motes and network. In this paper, we consider distributed detection where each mote performs a binary hypothesis test to detect locally the existence of a desired source and sends its (potentially erroneous) decision to FC during just one bit (1 indicates source existence and 0 otherwise). Hence, both processing and bandwidth constraints are met. We propose to use an artificial neural network (ANN) to correct erroneous local decisions. After error correction, the region affected by the source is specified by nodes with decision 1. Moreover, we propose to localize the source by deep learning in FC which converts the network of decisions 1 and 0 to a black and white image with white pixels in the locations of motes with decision 1. The proposed schemes of error correction by ANN (ECANN) and source localization with deep learning (SoLDeL) were evaluated in a fire detection application. We showed that SoLDeL performs appropriately and scales well into large networks. Moreover, the applicability of ECANN in delineation of farm management zones was illustrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Hereinafter, motes are referred to as nodes as it is more common in the literature of WSN.
 
Literature
2.
go back to reference Albelwi S, Mahmood A (2017) A framework for designing the architectures of deep convolutional neural networks. Entropy 19(6):242 Albelwi S, Mahmood A (2017) A framework for designing the architectures of deep convolutional neural networks. Entropy 19(6):242
3.
go back to reference Alippi C (2014) Intelligence for embedded systems: a methodological approach. Springer, Cham Alippi C (2014) Intelligence for embedded systems: a methodological approach. Springer, Cham
4.
go back to reference Alsheikh MA, Lin S, Niyato D, Tan H (2014) Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutor 16(4):1996–2018 Alsheikh MA, Lin S, Niyato D, Tan H (2014) Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutor 16(4):1996–2018
5.
go back to reference Aquino G, Rubio JDJ, Pacheco J, Gutierrez GJ, Ochoa G, Balcazar R, Cruz DR, Garcia E, Novoa JF, Zacarias A (2020) Novel nonlinear hypothesis for the delta parallel robot modeling. IEEE Access 8:46324–46334 Aquino G, Rubio JDJ, Pacheco J, Gutierrez GJ, Ochoa G, Balcazar R, Cruz DR, Garcia E, Novoa JF, Zacarias A (2020) Novel nonlinear hypothesis for the delta parallel robot modeling. IEEE Access 8:46324–46334
6.
go back to reference Battistelli G, Chisci L, Farina A, Graziano A (2013) Consensus CPHD filter for distributed multitarget tracking. IEEE J Sel Top Signal Process 7(3):508–520 Battistelli G, Chisci L, Farina A, Graziano A (2013) Consensus CPHD filter for distributed multitarget tracking. IEEE J Sel Top Signal Process 7(3):508–520
7.
go back to reference Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, New YorkMATH Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, New YorkMATH
9.
go back to reference Chair Z, Varshney P (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst AES–22(1):98–101 Chair Z, Varshney P (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst AES–22(1):98–101
10.
go back to reference Chang KC, Saha RK, Bar-Shalom Y (1997) On optimal track-to-track fusion. IEEE Trans Aerosp Electron Syst 33(4):1271–1276 Chang KC, Saha RK, Bar-Shalom Y (1997) On optimal track-to-track fusion. IEEE Trans Aerosp Electron Syst 33(4):1271–1276
11.
go back to reference Chong CY, Mori S, Chang K (1990) Distributed multitarget multisensor tracking. In: Bar-Shalom Y (ed) Multitarget-multisensor tracking: advanced applications, chapter 8. Artech House, Norwood Chong CY, Mori S, Chang K (1990) Distributed multitarget multisensor tracking. In: Bar-Shalom Y (ed) Multitarget-multisensor tracking: advanced applications, chapter 8. Artech House, Norwood
12.
go back to reference Ciuonzo D, De Maio A, Salvo Rossi P (2015) A systematic framework for composite hypothesis testing of independent Bernoulli trials. IEEE Signal Process Lett 22(9):1249–1253 Ciuonzo D, De Maio A, Salvo Rossi P (2015) A systematic framework for composite hypothesis testing of independent Bernoulli trials. IEEE Signal Process Lett 22(9):1249–1253
13.
go back to reference Ciuonzo D, Romano G, Salvo Rossi P (2013) Optimality of received energy in decision fusion over Rayleigh fading diversity MAC with non-identical sensors. IEEE Trans Signal Process 61(1):22–27MathSciNetMATH Ciuonzo D, Romano G, Salvo Rossi P (2013) Optimality of received energy in decision fusion over Rayleigh fading diversity MAC with non-identical sensors. IEEE Trans Signal Process 61(1):22–27MathSciNetMATH
14.
go back to reference Ciuonzo D, Salvo Rossi P (2014) Decision fusion with unknown sensor detection probability. IEEE Signal Process Lett 21(2):208–212 Ciuonzo D, Salvo Rossi P (2014) Decision fusion with unknown sensor detection probability. IEEE Signal Process Lett 21(2):208–212
15.
go back to reference Ciuonzo D, Salvo Rossi P (2017) Distributed detection of a non-cooperative target via generalized locally-optimum approaches. Inf Fusion 36:261–274 Ciuonzo D, Salvo Rossi P (2017) Distributed detection of a non-cooperative target via generalized locally-optimum approaches. Inf Fusion 36:261–274
16.
go back to reference Ciuonzo D, Salvo Rossi P, Willett P (2017) Generalized Rao test for decentralized detection of an uncooperative target. IEEE Signal Process Lett 24(5):678–682 Ciuonzo D, Salvo Rossi P, Willett P (2017) Generalized Rao test for decentralized detection of an uncooperative target. IEEE Signal Process Lett 24(5):678–682
17.
go back to reference Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. Wiley, New York Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. Wiley, New York
18.
go back to reference Elias I, Rubio J, Cruz D, Ochoa G, Novoa J, Martinez D, Muñiz S, Balcazar R, Garcia E, Juarez C (2020) Hessian with mini-batches for electrical demand prediction. Appl Sci 10:2036 Elias I, Rubio J, Cruz D, Ochoa G, Novoa J, Martinez D, Muñiz S, Balcazar R, Garcia E, Juarez C (2020) Hessian with mini-batches for electrical demand prediction. Appl Sci 10:2036
19.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
20.
go back to reference Gustafsson F, Gunnarsson F, Lindgren D (2012) Sensor models and localization algorithms for sensor networks based on received signal strength. EURASIP J Wirel Commun Netw 2012(1):1–13 Gustafsson F, Gunnarsson F, Lindgren D (2012) Sensor models and localization algorithms for sensor networks based on received signal strength. EURASIP J Wirel Commun Netw 2012(1):1–13
21.
go back to reference Javadi SH (2016) Detection over sensor networks: a tutorial. IEEE Aerosp Electron Syst Mag 31(3):2–18 Javadi SH (2016) Detection over sensor networks: a tutorial. IEEE Aerosp Electron Syst Mag 31(3):2–18
23.
go back to reference Javadi SH, Mohammadi A, Farina A (2019) Hierarchical copula-based distributed detection. Sig Process 158:100–106 Javadi SH, Mohammadi A, Farina A (2019) Hierarchical copula-based distributed detection. Sig Process 158:100–106
24.
go back to reference Javadi S, Moosaei H, Ciuonzo D (2019) Learning wireless sensor networks for source localization. Sensors 19(3):635 Javadi S, Moosaei H, Ciuonzo D (2019) Learning wireless sensor networks for source localization. Sensors 19(3):635
25.
go back to reference Javadi SH, Peiravi A (2012) Reliable distributed detection in multi-hop clustered wireless sensor networks. IET Signal Process 6(8):743–750 Javadi SH, Peiravi A (2012) Reliable distributed detection in multi-hop clustered wireless sensor networks. IET Signal Process 6(8):743–750
26.
go back to reference Javadi SH, Peiravi A (2015) Fusion of weighted decisions in wireless sensor networks. IET Wirel Sensor Syst 5(2):97–105 Javadi SH, Peiravi A (2015) Fusion of weighted decisions in wireless sensor networks. IET Wirel Sensor Syst 5(2):97–105
27.
go back to reference Javadi SH, Mohammadi A, Farina A (2019) Serial Plackett fusion for decision making. IEEE Trans Aerosp Electron Syst (in press) (2019) Javadi SH, Mohammadi A, Farina A (2019) Serial Plackett fusion for decision making. IEEE Trans Aerosp Electron Syst (in press) (2019)
28.
go back to reference Javadi SH, Peiravi A (2013) Weighted decision fusion vs. counting rule over wireless sensor networks: a realistic comparison. In: 2013 21st Iranian conf. electr. eng. (ICEE), pp 1–6 Javadi SH, Peiravi A (2013) Weighted decision fusion vs. counting rule over wireless sensor networks: a realistic comparison. In: 2013 21st Iranian conf. electr. eng. (ICEE), pp 1–6
29.
go back to reference Jayadeva, Khemchandani R Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5:905–910MATH Jayadeva, Khemchandani R Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5:905–910MATH
30.
go back to reference Julier SJ (2008) Fusion without independence. In: IET seminar on target tracking and data fusion: algorithms and applications Julier SJ (2008) Fusion without independence. In: IET seminar on target tracking and data fusion: algorithms and applications
31.
go back to reference Katenka N, Levina E, Michailidis G (2008) Local vote decision fusion for target detection in wireless sensor networks. IEEE Trans Signal Process 56(1):329–338MathSciNetMATH Katenka N, Levina E, Michailidis G (2008) Local vote decision fusion for target detection in wireless sensor networks. IEEE Trans Signal Process 56(1):329–338MathSciNetMATH
32.
go back to reference Kay SM (1998) Fundamentals of statistical signal processing, volume 2: detection theory. Prentice Hall, Upper Saddle River Kay SM (1998) Fundamentals of statistical signal processing, volume 2: detection theory. Prentice Hall, Upper Saddle River
33.
go back to reference Ketabchi S, Moosaei H, Razzaghi M, Pardalos PM (2019) An improvement on parametric -support vector algorithm for classification. Ann Oper Res 276:155-168MathSciNetMATH Ketabchi S, Moosaei H, Razzaghi M, Pardalos PM (2019) An improvement on parametric -support vector algorithm for classification. Ann Oper Res 276:155-168MathSciNetMATH
34.
go back to reference Krishnamachari B, Iyengar S (2004) Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Trans Comput 53(3):241–250 Krishnamachari B, Iyengar S (2004) Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Trans Comput 53(3):241–250
35.
go back to reference Liu C, Fang D, Yang Z, Jiang H, Chen X, Wang W, Xing T, Cai L (2016) RSS distribution-based passive localization and its application in sensor networks. IEEE Trans Wirel Commun 15(4):2883–2895 Liu C, Fang D, Yang Z, Jiang H, Chen X, Wang W, Xing T, Cai L (2016) RSS distribution-based passive localization and its application in sensor networks. IEEE Trans Wirel Commun 15(4):2883–2895
36.
go back to reference Manyika J, Durrant-Whyte H (1994) Data fusion and sensor management: a decentralized information-theoretic approach. Ellis Horwood, Hempstead Manyika J, Durrant-Whyte H (1994) Data fusion and sensor management: a decentralized information-theoretic approach. Ellis Horwood, Hempstead
37.
go back to reference Masazade E, Niu R, Varshney PK, Keskinoz M (2010) Energy aware iterative source localization for wireless sensor networks. IEEE Trans Signal Process 58(9):4824–4835MathSciNetMATH Masazade E, Niu R, Varshney PK, Keskinoz M (2010) Energy aware iterative source localization for wireless sensor networks. IEEE Trans Signal Process 58(9):4824–4835MathSciNetMATH
38.
go back to reference Maxim Integrated: SOT temperature sensors with period/frequency output (2014). Rev. 1 Maxim Integrated: SOT temperature sensors with period/frequency output (2014). Rev. 1
39.
go back to reference Meda-Campana JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973 Meda-Campana JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973
40.
go back to reference Mouazen AM (2006) Soil Survey Device. International publication published under the patent cooperation treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number: WO2006/015463; PCT/BE2005/000129; IPC: G01N21/00; G01N21/0 Mouazen AM (2006) Soil Survey Device. International publication published under the patent cooperation treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number: WO2006/015463; PCT/BE2005/000129; IPC: G01N21/00; G01N21/0
41.
go back to reference Niu R, Varshney PK (2005) Distributed detection and fusion in a large wireless sensor network of random size. EURASIP J Wirel Commun Netw 2005(4):462–472MATH Niu R, Varshney PK (2005) Distributed detection and fusion in a large wireless sensor network of random size. EURASIP J Wirel Commun Netw 2005(4):462–472MATH
42.
go back to reference Niu R, Varshney PK (2008) Performance analysis of distributed detection in a random sensor field. IEEE Trans Signal Process 56(1):339–349MathSciNetMATH Niu R, Varshney PK (2008) Performance analysis of distributed detection in a random sensor field. IEEE Trans Signal Process 56(1):339–349MathSciNetMATH
43.
go back to reference Niu R, Varshney PK, Cheng Q (2006) Distributed detection in a large wireless sensor network. Inf Fusion 7(4):380–394 Niu R, Varshney PK, Cheng Q (2006) Distributed detection in a large wireless sensor network. Inf Fusion 7(4):380–394
44.
go back to reference Rossia JL, Chetehounab K, Collinc A, Morettia B, Balbia JH (2010) Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire. Combust Sci Technol 182(10):1457–1477 Rossia JL, Chetehounab K, Collinc A, Morettia B, Balbia JH (2010) Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire. Combust Sci Technol 182(10):1457–1477
45.
go back to reference Rubio dJ (2009) Sofmls: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309 Rubio dJ (2009) Sofmls: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309
46.
go back to reference Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley-Interscience, New York Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley-Interscience, New York
48.
go back to reference Texas Instruments: analog temperature sensor, RTD and precision NTC Thermistor IC (2015) Texas Instruments: analog temperature sensor, RTD and precision NTC Thermistor IC (2015)
51.
go back to reference Viswanathan R, Thomopoulos SCA, Tumuluri R (1988) Optimal serial distributed decision fusion. IEEE Trans Aerosp Electron Syst 24(4):366–376 Viswanathan R, Thomopoulos SCA, Tumuluri R (1988) Optimal serial distributed decision fusion. IEEE Trans Aerosp Electron Syst 24(4):366–376
52.
go back to reference Viswanathan R, Varshney PK (1997) Distributed detection with multiple sensors: part Ifundamentals. Proc IEEE 85(1):54–63 Viswanathan R, Varshney PK (1997) Distributed detection with multiple sensors: part Ifundamentals. Proc IEEE 85(1):54–63
54.
go back to reference Williams JL, Fisher JW, Willsky AS (2007) Approximate dynamic programming for communication-constrained sensor network management. IEEE Trans Signal Process 55(8):4300–4311MathSciNetMATH Williams JL, Fisher JW, Willsky AS (2007) Approximate dynamic programming for communication-constrained sensor network management. IEEE Trans Signal Process 55(8):4300–4311MathSciNetMATH
55.
go back to reference Zuo L, Niu R, Varshney PK (2011) Conditional posterior Cramer Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans Signal Process 59(1):1–14MathSciNetMATH Zuo L, Niu R, Varshney PK (2011) Conditional posterior Cramer Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans Signal Process 59(1):1–14MathSciNetMATH
Metadata
Title
Source localization in resource-constrained sensor networks based on deep learning
Authors
S. Hamed Javadi
Angela Guerrero
Abdul M. Mouazen
Publication date
03-08-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05253-3

Other articles of this Issue 9/2021

Neural Computing and Applications 9/2021 Go to the issue

Premium Partner