Skip to main content
Top
Published in: Journal of Materials Science 11/2018

27-02-2018 | Polymers

Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity

Authors: Yichao Li, Jianying Ji, Yu Wang, Renfu Li, Wei-Hong Zhong

Published in: Journal of Materials Science | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A study on effectively making conductive nanocomposites with adaptable interfaces formed between soy protein-treated nanofillers and polymer matrices with different structures is presented. Although soy protein, an abundant biomaterial with various functional groups, is basically considered as a hydrophilic material, this study demonstrated that it could be used as a novel surfactant for treating nanofillers in non-aqueous environment and the treated nanofillers were successfully incorporated into hydrophobic polymers. Confocal microscopy results showed that soy protein well interacted with CNFs, and well-dispersed soy protein-treated CNFs (s-CNFs) within both thermoplastic (polycarbonate) and thermoset (epoxy) conductive nanocomposites were observed in the optical microscopy and scanning electron microscopy images. The significant enhancements in the electrical conductivities were confirmed by the DC and AC conductivity testing for the resulting nanocomposites at low s-CNF loadings. In specific, an increase of 6 orders and 5 orders for the DC conductivities of polycarbonate and epoxy nanocomposites, respectively, is achieved at only 0.5 wt% loading of s-CNFs. The present work provides a green and adaptive nanofiller treatment method for fabrication of conductive nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites. Polymers 4(2):889–912CrossRef Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites. Polymers 4(2):889–912CrossRef
3.
go back to reference Lin CF, Hu L, Cheng CB, Sun K, Guo XK, Shao Q, Li JB, Wang N, Guo ZH (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260(10):65–72CrossRef Lin CF, Hu L, Cheng CB, Sun K, Guo XK, Shao Q, Li JB, Wang N, Guo ZH (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260(10):65–72CrossRef
4.
go back to reference Sun K, Xie PT, Wang ZY, Su TM, Shao Q, Ryu JE, Zhang XH, Guo J, Shankar A, Li JF, Fan RH, Cao DP, Guo ZH (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125(8):50–57CrossRef Sun K, Xie PT, Wang ZY, Su TM, Shao Q, Ryu JE, Zhang XH, Guo J, Shankar A, Li JF, Fan RH, Cao DP, Guo ZH (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125(8):50–57CrossRef
5.
go back to reference Wang CF, Zhao M, Li J, Yu JL, Sun SF, Ge SS, Guo XK, Xie F, Jiang B, Wujcik EK, Huang YD, Wang N, Guo ZH (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131(22):263–271CrossRef Wang CF, Zhao M, Li J, Yu JL, Sun SF, Ge SS, Guo XK, Xie F, Jiang B, Wujcik EK, Huang YD, Wang N, Guo ZH (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131(22):263–271CrossRef
6.
go back to reference Zhang K, Li GH, Feng LM, Wang N, Guo J, Sun K, Yu KX, Zeng JB, Li TX, Guo ZH, Wang M (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369CrossRef Zhang K, Li GH, Feng LM, Wang N, Guo J, Sun K, Yu KX, Zeng JB, Li TX, Guo ZH, Wang M (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369CrossRef
7.
go back to reference Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152(3–4):187–214CrossRef Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152(3–4):187–214CrossRef
8.
go back to reference Abbasi S, Derdouri A, Carreau PJ (2011) Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites. Polym Eng Sci 51(5):992–1003CrossRef Abbasi S, Derdouri A, Carreau PJ (2011) Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites. Polym Eng Sci 51(5):992–1003CrossRef
9.
go back to reference Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134CrossRef Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47(4):1126–1134CrossRef
10.
go back to reference Kumar S, Lively B, Sun LL, Li B, Zhong WH (2010) Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications. Carbon 48(13):3846–3857CrossRef Kumar S, Lively B, Sun LL, Li B, Zhong WH (2010) Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications. Carbon 48(13):3846–3857CrossRef
11.
go back to reference Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113CrossRef Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113CrossRef
12.
go back to reference Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT–polymer composites. Carbon 46:1497–1505CrossRef Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT–polymer composites. Carbon 46:1497–1505CrossRef
13.
go back to reference Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551–1557CrossRef Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17:1551–1557CrossRef
14.
go back to reference Avila-Orta CA, Cruz-Delgado VJ, Neira-Velazquez MG, Hernandez-Hernandez E, Mendez-Padilla MG, Medellin-Rodriguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47(8):1916–1921CrossRef Avila-Orta CA, Cruz-Delgado VJ, Neira-Velazquez MG, Hernandez-Hernandez E, Mendez-Padilla MG, Medellin-Rodriguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47(8):1916–1921CrossRef
15.
go back to reference Zhao M, Meng LH, Ma LC, Ma LN, Yang XB, Huang YD, Ryu JE, Shankar A, Li TX, Yan C, Guo ZH (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154(18):28–36CrossRef Zhao M, Meng LH, Ma LC, Ma LN, Yang XB, Huang YD, Ryu JE, Shankar A, Li TX, Yan C, Guo ZH (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154(18):28–36CrossRef
16.
go back to reference Liu H, Li YL, Dai K, Zheng GQ, Liu CT, Shen CY, Yan XR, Guo J, Guo ZH (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4:157–166CrossRef Liu H, Li YL, Dai K, Zheng GQ, Liu CT, Shen CY, Yan XR, Guo J, Guo ZH (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4:157–166CrossRef
17.
go back to reference Hu Z, Shao Q, Xu XR, Zhang DY, Huang YD (2017) Surface initiated grafting of polymer chains on carbon nanotubes via one-step cycloaddition of diarylcarbene. Compos Sci Technol 142(12):294–301CrossRef Hu Z, Shao Q, Xu XR, Zhang DY, Huang YD (2017) Surface initiated grafting of polymer chains on carbon nanotubes via one-step cycloaddition of diarylcarbene. Compos Sci Technol 142(12):294–301CrossRef
18.
go back to reference Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837CrossRef Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837CrossRef
19.
go back to reference Numata M, Asai M, Kaneko K, BaeA H, Hasegawa T, Sakurai K, Shinkai S (2005) Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1, 3-glucans). J Am Chem Soc 127(16):5875CrossRef Numata M, Asai M, Kaneko K, BaeA H, Hasegawa T, Sakurai K, Shinkai S (2005) Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1, 3-glucans). J Am Chem Soc 127(16):5875CrossRef
20.
go back to reference Bhattacharyya S, Sinturel C, Salvetat JP, Saboungia ML (2005) Protein-functionalized carbon nanotube–polymer composites. Appl Phys Lett 86:113104CrossRef Bhattacharyya S, Sinturel C, Salvetat JP, Saboungia ML (2005) Protein-functionalized carbon nanotube–polymer composites. Appl Phys Lett 86:113104CrossRef
21.
go back to reference Dhriti N, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259CrossRef Dhriti N, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259CrossRef
22.
go back to reference Karajanagi SS, Yang H, Asuri P, Sellitto E, Dordick JS, Kane RS (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392CrossRef Karajanagi SS, Yang H, Asuri P, Sellitto E, Dordick JS, Kane RS (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392CrossRef
23.
go back to reference Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating single-walled carbon nanotubes with phospholipids. J Phys Chem B 110(6):2475CrossRef Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating single-walled carbon nanotubes with phospholipids. J Phys Chem B 110(6):2475CrossRef
24.
go back to reference Fu X, Wang Y, Zhong WH, Cao GZ (2017) A multifunctional protein coating for self-assembled porous nanostructured electrodes. ACS Omega 2:1679–1686CrossRef Fu X, Wang Y, Zhong WH, Cao GZ (2017) A multifunctional protein coating for self-assembled porous nanostructured electrodes. ACS Omega 2:1679–1686CrossRef
25.
go back to reference Jewel Y, Liu T, Eyler A, Zhong WH, Liu J (2015) Potential application and molecular mechanisms of soy protein on the enhancement of graphite nanoplatelet dispersion. J Phys Chem C 119:26760–26767CrossRef Jewel Y, Liu T, Eyler A, Zhong WH, Liu J (2015) Potential application and molecular mechanisms of soy protein on the enhancement of graphite nanoplatelet dispersion. J Phys Chem C 119:26760–26767CrossRef
26.
go back to reference Ortiz-Acevedo A, Xie H, Zorbas V, Dalton Sampson WM, Baughman RH, Draper RK, Musselman IH, Dieckmann GR (2005) Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J Am Chem Soc 127(26):9512CrossRef Ortiz-Acevedo A, Xie H, Zorbas V, Dalton Sampson WM, Baughman RH, Draper RK, Musselman IH, Dieckmann GR (2005) Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J Am Chem Soc 127(26):9512CrossRef
27.
go back to reference Ji J, Lively B, Zhong WH (2012) Soy protein-assisted dispersion of carbon nanotubes in a polymer matrix. Maters Express 2:76–82CrossRef Ji J, Lively B, Zhong WH (2012) Soy protein-assisted dispersion of carbon nanotubes in a polymer matrix. Maters Express 2:76–82CrossRef
28.
go back to reference Nithiyasri P, Balaji K, Brindha P, Parthasarathy M (2012) Programmable self-assembly of carbon nanotubes assisted by reversible denaturation of a protein. Nanotechnology 23(46):1–8CrossRef Nithiyasri P, Balaji K, Brindha P, Parthasarathy M (2012) Programmable self-assembly of carbon nanotubes assisted by reversible denaturation of a protein. Nanotechnology 23(46):1–8CrossRef
29.
go back to reference Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. Garland Science, New York Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. Garland Science, New York
30.
go back to reference Souzandeh H, Wang Y, Zhong WH (2016) “Green” nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Adv 6:105948–105956CrossRef Souzandeh H, Wang Y, Zhong WH (2016) “Green” nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Adv 6:105948–105956CrossRef
31.
go back to reference Ji J, Li B, Zhong WH (2012) An ultraelastic poly (ethylene oxide)/soy protein film with fully amorphous structure. Macromelocules 45(1):602–606CrossRef Ji J, Li B, Zhong WH (2012) An ultraelastic poly (ethylene oxide)/soy protein film with fully amorphous structure. Macromelocules 45(1):602–606CrossRef
32.
go back to reference Yoshimura SH, Khan S, Maruyama H, Nakayama Y, Takeyasu K (2011) Fluorescence labeling of carbon nanotubes and visualization of a nanotube–protein hybrid under fluorescence microscope. Biomacromol 12(4):1200–1204CrossRef Yoshimura SH, Khan S, Maruyama H, Nakayama Y, Takeyasu K (2011) Fluorescence labeling of carbon nanotubes and visualization of a nanotube–protein hybrid under fluorescence microscope. Biomacromol 12(4):1200–1204CrossRef
33.
go back to reference Lee AJ, Wang X, Carlson LJ, Smyder JA, Loesch B, Tu X, Zheng M, Krauss TD (2011) Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett 11(4):1636–1640CrossRef Lee AJ, Wang X, Carlson LJ, Smyder JA, Loesch B, Tu X, Zheng M, Krauss TD (2011) Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett 11(4):1636–1640CrossRef
34.
go back to reference Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5–6):1153–1158CrossRef
35.
go back to reference Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRef Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRef
36.
go back to reference Lee SH, Kim JH, Kim KW, Youn JR, Choi SH, Kim SY (2009) Effects of filler geometry on internal structure and physical properties of polycarbonate composites prepared with various carbon fillers. Polym Int 58(4):354–361CrossRef Lee SH, Kim JH, Kim KW, Youn JR, Choi SH, Kim SY (2009) Effects of filler geometry on internal structure and physical properties of polycarbonate composites prepared with various carbon fillers. Polym Int 58(4):354–361CrossRef
37.
go back to reference Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51:2643–2651CrossRef Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in situ stabilized carbon nanofibers. Polymer 51:2643–2651CrossRef
38.
go back to reference Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Design 31:2406–2413CrossRef Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Design 31:2406–2413CrossRef
39.
go back to reference Allaoui A, Hoa SV, Pugh MD (2008) The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Compos Sci Technol 68:410–416CrossRef Allaoui A, Hoa SV, Pugh MD (2008) The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Compos Sci Technol 68:410–416CrossRef
40.
go back to reference Ardanuy M, Rodriguez-Perez MA, Algaba I (2011) Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Compos Part B Eng 42:675–681CrossRef Ardanuy M, Rodriguez-Perez MA, Algaba I (2011) Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Compos Part B Eng 42:675–681CrossRef
41.
go back to reference Karippal JJ, Murthy HNN, Rai KS, Krishna M, Sreejith M (2010) Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polym Bull 65:849–861CrossRef Karippal JJ, Murthy HNN, Rai KS, Krishna M, Sreejith M (2010) Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polym Bull 65:849–861CrossRef
42.
go back to reference Shokrieh MM, Esmkhani M, Vahedi F, Shahverdi R (2013) Improvement of mechanical and electrical properties of epoxy resin with carbon nanofibers. Iran Polym J 22:721–727CrossRef Shokrieh MM, Esmkhani M, Vahedi F, Shahverdi R (2013) Improvement of mechanical and electrical properties of epoxy resin with carbon nanofibers. Iran Polym J 22:721–727CrossRef
43.
go back to reference Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRef Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRef
44.
go back to reference Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704CrossRef Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704CrossRef
45.
go back to reference Kotaki M, Wang K, Toh ML, Chen L, Wong SY, He C (2006) Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids. Macromolecules 39:908–911CrossRef Kotaki M, Wang K, Toh ML, Chen L, Wong SY, He C (2006) Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids. Macromolecules 39:908–911CrossRef
46.
go back to reference Nie Y, Hubert T (2011) Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym Int 60:1574–1580CrossRef Nie Y, Hubert T (2011) Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym Int 60:1574–1580CrossRef
47.
go back to reference Sun LH, Ounaies Z, Gao XL, Whalen CA, Yang ZG (2011) Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. J Nanomater 2011:307589 Sun LH, Ounaies Z, Gao XL, Whalen CA, Yang ZG (2011) Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. J Nanomater 2011:307589
48.
go back to reference McLachlan DS, Sauti G (2007) The AC and DC conductivity of nanocomposites. J Nanomater 2007:1–9CrossRef McLachlan DS, Sauti G (2007) The AC and DC conductivity of nanocomposites. J Nanomater 2007:1–9CrossRef
49.
go back to reference Wang Z, Zhou W, Sui X, Dong L, Cai H, Zuo J, Chen Q (2016) Temperature-dependent dielectric properties of Al/epoxy nanocomposites. J Electron Mater 45:3069–3078CrossRef Wang Z, Zhou W, Sui X, Dong L, Cai H, Zuo J, Chen Q (2016) Temperature-dependent dielectric properties of Al/epoxy nanocomposites. J Electron Mater 45:3069–3078CrossRef
50.
go back to reference Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 4:300–310CrossRef Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 4:300–310CrossRef
52.
go back to reference Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl S 41:1345–1367CrossRef Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl S 41:1345–1367CrossRef
Metadata
Title
Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity
Authors
Yichao Li
Jianying Ji
Yu Wang
Renfu Li
Wei-Hong Zhong
Publication date
27-02-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2121-y

Other articles of this Issue 11/2018

Journal of Materials Science 11/2018 Go to the issue

Premium Partners