Skip to main content
Top

2025 | OriginalPaper | Chapter

SPAMming Labels: Efficient Annotations for the Trackers of Tomorrow

Authors : Orcun Cetintas, Tim Meinhardt, Guillem Brasó, Laura Leal-Taixé

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing the annotation efficiency of trajectory annotations from videos has the potential to enable the next generation of data-hungry tracking algorithms to thrive on large-scale datasets. Despite the importance of this task, there are currently very few works exploring how to efficiently label tracking datasets comprehensively. In this work, we introduce SPAM, a video label engine that provides high-quality labels with minimal human intervention. SPAM is built around two key insights: i) most tracking scenarios can be easily resolved. To take advantage of this, we utilize a pre-trained model to generate high-quality pseudo-labels, reserving human involvement for a smaller subset of more difficult instances; ii) handling the spatiotemporal dependencies of track annotations across time can be elegantly and efficiently formulated through graphs. Therefore, we use a unified graph formulation to address the annotation of both detections and identity association for tracks across time. Based on these insights, SPAM produces high-quality annotations with a fraction of ground truth labeling cost. We demonstrate that trackers trained on SPAM labels achieve comparable performance to those trained on human annotations while requiring only 3–20% of the human labeling effort. Hence, SPAM paves the way towards highly efficient labeling of large-scale tracking datasets. We release all models and code.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with polygon-rnn++. In: CVPR (2018) Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with polygon-rnn++. In: CVPR (2018)
2.
go back to reference Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016) Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)
4.
go back to reference Bastani, F., He, S., Madden, S.: Self-supervised multi-object tracking with cross-input consistency. Adv. Neural Inf. Process. Syst. 34, 13695–13706 (2021) Bastani, F., He, S., Madden, S.: Self-supervised multi-object tracking with cross-input consistency. Adv. Neural Inf. Process. Syst. 34, 13695–13706 (2021)
5.
go back to reference Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377 (2018) Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377 (2018)
6.
go back to reference Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE TPAMI 33(9), 1806–1819 (2011)CrossRef Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE TPAMI 33(9), 1806–1819 (2011)CrossRef
7.
go back to reference Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV, pp. 941–951 (2019) Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV, pp. 941–951 (2019)
8.
go back to reference Brasó, G., Cetintas, O., Leal-Taixé, L.: Multi-object tracking and segmentation via neural message passing. IJCV 130(12), 3035–3053 (2022)CrossRef Brasó, G., Cetintas, O., Leal-Taixé, L.: Multi-object tracking and segmentation via neural message passing. IJCV 130(12), 3035–3053 (2022)CrossRef
9.
go back to reference Braso, G., Leal-Taixe, L.: Learning a neural solver for multiple object tracking. In: CVPR (2020) Braso, G., Leal-Taixe, L.: Learning a neural solver for multiple object tracking. In: CVPR (2020)
10.
go back to reference Cai, J., et al.: Memot: multi-object tracking with memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8090–8100 (2022) Cai, J., et al.: Memot: multi-object tracking with memory. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8090–8100 (2022)
11.
go back to reference Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. NeurIPS (2020) Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. NeurIPS (2020)
12.
go back to reference Cetintas, O., Brasó, G., Leal-Taixé, L.: Unifying short and long-term tracking with graph hierarchies. In: CVPR, pp. 22877–22887 (June 2023) Cetintas, O., Brasó, G., Leal-Taixé, L.: Unifying short and long-term tracking with graph hierarchies. In: CVPR, pp. 22877–22887 (June 2023)
13.
go back to reference Chen, L., Ai, H., Zhuang, Z., Shang, C.: Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018) Chen, L., Ai, H., Zhuang, Z., Shang, C.: Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)
14.
go back to reference Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: IEEE International Conference on Machine Learning, pp. 1597–1607. PMLR (2020) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: IEEE International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
15.
go back to reference Chu, P., Ling, H.: Famnet: joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In: ICCV (October 2019) Chu, P., Ling, H.: Famnet: joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In: ICCV (October 2019)
16.
go back to reference Dai, K., et al.: Video annotation for visual tracking via selection and refinement. In: ICCV (2021) Dai, K., et al.: Video annotation for visual tracking via selection and refinement. In: ICCV (2021)
17.
go back to reference Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1601–1610 (June 2021) Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1601–1610 (June 2021)
18.
go back to reference Dendorfer, P., et al.: Motchallenge: a benchmark for single-camera multiple target tracking. Int. J. Comput. Vis. 129(4), 845–881 (2021)CrossRef Dendorfer, P., et al.: Motchallenge: a benchmark for single-camera multiple target tracking. Int. J. Comput. Vis. 129(4), 845–881 (2021)CrossRef
19.
go back to reference Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. ArXiv abs/2003.09003 (2020) Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. ArXiv abs/2003.09003 (2020)
20.
go back to reference Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR, pp. 304–311. IEEE (2009) Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR, pp. 304–311. IEEE (2009)
21.
go back to reference Elezi, I., Yu, Z., Anandkumar, A., Leal-Taixe, L., Alvarez, J.M.: Not all labels are equal: rationalizing the labeling costs for training object detection. In: CVPR, pp. 14492–14501 (2022) Elezi, I., Yu, Z., Anandkumar, A., Leal-Taixe, L., Alvarez, J.M.: Not all labels are equal: rationalizing the labeling costs for training object detection. In: CVPR, pp. 14492–14501 (2022)
23.
go back to reference Fabbri, M., et al.: Motsynth: How can synthetic data help pedestrian detection and tracking? In: ICCV, pp. 10849–10859, October 2021 Fabbri, M., et al.: Motsynth: How can synthetic data help pedestrian detection and tracking? In: ICCV, pp. 10849–10859, October 2021
24.
go back to reference Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R.: Learning to detect and track visible and occluded body joints in a virtual world. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. LNCS, vol. 11208, pp. 450–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_27 Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R.: Learning to detect and track visible and occluded body joints in a virtual world. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. LNCS, vol. 11208, pp. 450–466. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-01225-0_​27
25.
go back to reference Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ICCV (October 2017) Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ICCV (October 2017)
26.
go back to reference Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR, pp. 4340–4349 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR, pp. 4340–4349 (2016)
28.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
29.
go back to reference Hu, H.N., et al.: Joint monocular 3d vehicle detection and tracking. In: ICCV (2019) Hu, H.N., et al.: Joint monocular 3d vehicle detection and tracking. In: ICCV (2019)
30.
go back to reference Jabri, A., Owens, A., Efros, A.: Space-time correspondence as a contrastive random walk. Adv. Neural Inf. Process. Syst. 33, 19545–19560 (2020) Jabri, A., Owens, A., Efros, A.: Space-time correspondence as a contrastive random walk. Adv. Neural Inf. Process. Syst. 33, 19545–19560 (2020)
32.
go back to reference Kasturi, R., et al.: Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. IEEE TPAMI (2009) Kasturi, R., et al.: Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. IEEE TPAMI (2009)
33.
go back to reference Kaul, P., Xie, W., Zisserman, A.: Label, verify, correct: a simple few-shot object detection method. In: IEEE Conference on Computer Vision and Pattern Recognition (2022) Kaul, P., Xie, W., Zisserman, A.: Label, verify, correct: a simple few-shot object detection method. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
34.
go back to reference Kirillov, A., et al.: Segment anything. In: ICCV (2023) Kirillov, A., et al.: Segment anything. In: ICCV (2023)
35.
go back to reference Lan, S., Yang, X., Yu, Z., Wu, Z., Alvarez, J.M., Anandkumar, A.: Vision transformers are good mask auto-labelers. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2023) Lan, S., Yang, X., Yu, Z., Wu, Z., Alvarez, J.M., Anandkumar, A.: Vision transformers are good mask auto-labelers. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2023)
36.
37.
go back to reference Leal-Taixe, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: siamese CNN for robust target association. In: CVPRW (June 2016) Leal-Taixe, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: siamese CNN for robust target association. In: CVPRW (June 2016)
38.
go back to reference Leal-Taixe, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (June 2014) Leal-Taixe, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (June 2014)
39.
go back to reference Li, R., Zhang, B., Liu, J., Liu, W., Zhao, J., Teng, Z.: Heterogeneous diversity driven active learning for multi-object tracking. In: ICCV (2023) Li, R., Zhang, B., Liu, J., Liu, W., Zhao, J., Teng, Z.: Heterogeneous diversity driven active learning for multi-object tracking. In: ICCV (2023)
40.
go back to reference Litrico, M., Del Bue, A., Morerio, P.: Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023) Litrico, M., Del Bue, A., Morerio, P.: Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
41.
go back to reference Liu, K., Jin, S., Fu, Z., Chen, Z., Jiang, R., Ye, J.: Uncertainty-aware unsupervised multi-object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9996–10005 (2023) Liu, K., Jin, S., Fu, Z., Chen, Z., Jiang, R., Ye, J.: Uncertainty-aware unsupervised multi-object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9996–10005 (2023)
42.
go back to reference Luiten, J., et al.: HOTA: a higher order metric for evaluating multi-object tracking. IJCV 129(2), 548–578 (2021) Luiten, J., et al.: HOTA: a higher order metric for evaluating multi-object tracking. IJCV 129(2), 548–578 (2021)
43.
go back to reference Manen, S., Gygli, M., Dai, D., Van Gool, L.: Pathtrack: fast trajectory annotation with path supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 290–299 (2017) Manen, S., Gygli, M., Dai, D., Van Gool, L.: Pathtrack: fast trajectory annotation with path supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 290–299 (2017)
44.
go back to reference Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: multi-object tracking with transformers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022) Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: multi-object tracking with transformers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022)
45.
go back to reference Meng, S., Shao, D., Guo, J., Gao, S.: Tracking without label: unsupervised multiple object tracking via contrastive similarity learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16264–16273 (2023) Meng, S., Shao, D., Guo, J., Gao, S.: Tracking without label: unsupervised multiple object tracking via contrastive similarity learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16264–16273 (2023)
46.
go back to reference Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR, pp. 164–173 (2021) Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR, pp. 164–173 (2021)
49.
go back to reference Qin, Z., Zhou, S., Wang, L., Duan, J., Hua, G., Tang, W.: Motiontrack: learning robust short-term and long-term motions for multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17939–17948 (2023) Qin, Z., Zhou, S., Wang, L., Duan, J., Hua, G., Tang, W.: Motiontrack: learning robust short-term and long-term motions for multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17939–17948 (2023)
51.
go back to reference Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: CVPR (June 2018) Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: CVPR (June 2018)
53.
go back to reference Scovanner, P., Tappen, M.F.: Learning pedestrian dynamics from the real world. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 381–388. IEEE (2009) Scovanner, P., Tappen, M.F.: Learning pedestrian dynamics from the real world. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 381–388. IEEE (2009)
54.
go back to reference Seidenschwarz, J., Brasó, G., Serrano, V.C., Elezi, I., Leal-Taixé, L.: Simple cues lead to a strong multi-object tracker. In: CVPR, pp. 13813–13823 (2023) Seidenschwarz, J., Brasó, G., Serrano, V.C., Elezi, I., Leal-Taixé, L.: Simple cues lead to a strong multi-object tracker. In: CVPR, pp. 13813–13823 (2023)
57.
go back to reference Sun, P., et al.: Dancetrack: multi-object tracking in uniform appearance and diverse motion. In: CVPR (2022) Sun, P., et al.: Dancetrack: multi-object tracking in uniform appearance and diverse motion. In: CVPR (2022)
58.
go back to reference Sun, S., Akhtar, N., Song, X., Song, H., Mian, A., Shah, M.: Simultaneous detection and tracking with motion modelling for multiple object tracking. In: ECCV. pp. 626–643 (2020) Sun, S., Akhtar, N., Song, X., Song, H., Mian, A., Shah, M.: Simultaneous detection and tracking with motion modelling for multiple object tracking. In: ECCV. pp. 626–643 (2020)
59.
go back to reference Voigtlaender, P., et al.: Mots: multi-object tracking and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7942–7951 (2019) Voigtlaender, P., et al.: Mots: multi-object tracking and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7942–7951 (2019)
60.
go back to reference Voigtlaender, P., Luo, L., Yuan, C., Jiang, Y., Leibe, B.: Reducing the annotation effort for video object segmentation datasets. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3060–3069 (2021) Voigtlaender, P., Luo, L., Yuan, C., Jiang, Y., Leibe, B.: Reducing the annotation effort for video object segmentation datasets. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3060–3069 (2021)
61.
go back to reference Vondrick, C., Ramanan, D.: Video annotation and tracking with active learning. NeurIPS 24 (2011) Vondrick, C., Ramanan, D.: Video annotation and tracking with active learning. NeurIPS 24 (2011)
64.
go back to reference Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: CVPR (2019) Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: CVPR (2019)
67.
go back to reference Wei, F., Gao, Y., Wu, Z., Hu, H., Lin, S.: Aligning pretraining for detection via object-level contrastive learning. In: Advances in Neural Information Processing Systems (2021) Wei, F., Gao, Y., Wu, Z., Hu, H., Lin, S.: Aligning pretraining for detection via object-level contrastive learning. In: Advances in Neural Information Processing Systems (2021)
68.
go back to reference Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: CVPR, pp. 3415–3424 (2017) Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: CVPR, pp. 3415–3424 (2017)
70.
go back to reference You, S., Yao, H., Bao, B.K., Xu, C.: UTM: a unified multiple object tracking model with identity-aware feature enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21876–21886 (2023) You, S., Yao, H., Bao, B.K., Xu, C.: UTM: a unified multiple object tracking model with identity-aware feature enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21876–21886 (2023)
71.
go back to reference Yuan, D., et al.: Active learning for deep visual tracking. IEEE Trans. Neural Netw. Learn. Syst. (2023) Yuan, D., et al.: Active learning for deep visual tracking. IEEE Trans. Neural Netw. Learn. Syst. (2023)
73.
go back to reference Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008) Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)
74.
go back to reference Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: CVPR, pp. 3213–3221 (2017) Zhang, S., Benenson, R., Schiele, B.: Citypersons: a diverse dataset for pedestrian detection. In: CVPR, pp. 3213–3221 (2017)
75.
go back to reference Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1 Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-20047-2_​1
76.
go back to reference Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: on the fairness of detection and re-identification in multiple object tracking. IJCV 129(11), 3069–3087 (2021)CrossRef Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: on the fairness of detection and re-identification in multiple object tracking. IJCV 129(11), 3069–3087 (2021)CrossRef
77.
go back to reference Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: CVPR, pp. 1367–1376 (2017) Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild. In: CVPR, pp. 1367–1376 (2017)
Metadata
Title
SPAMming Labels: Efficient Annotations for the Trackers of Tomorrow
Authors
Orcun Cetintas
Tim Meinhardt
Guillem Brasó
Laura Leal-Taixé
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_22

Premium Partner