Skip to main content
Top

2017 | OriginalPaper | Chapter

Sparse Control of Multiagent Systems

Authors : Mattia Bongini, Massimo Fornasier

Published in: Active Particles, Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, numerous studies have focused on the mathematical modeling of social dynamics, with self-organization, i.e., the autonomous pattern formation, as the main driving concept. Usually, first- or second-order models are employed to reproduce, at least qualitatively, certain global patterns (such as bird flocking, milling schools of fish, or queue formations in pedestrian flows, just to mention a few). It is, however, common experience that self-organization does not always spontaneously occur in a society. In this review chapter, we aim to describe the limitations of decentralized controls in restoring certain desired configurations and to address the question of whether it is possible to externally and parsimoniously influence the dynamics to reach a given outcome. More specifically, we address the issue of finding the sparsest control strategy for finite agent-based models in order to lead the dynamics optimally toward a desired pattern.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Given a real \(N\times N\) matrix \(A = (a_{ij})_{i,j = 1}^N\) and \(v\in {\mathbb R}^{dN}\), we denote by Av the action of A on \({\mathbb R}^{dN}\) by mapping v to \((a_{i1}v_{1} + \cdots + a_{iN}v_{N})_{i=1}^N\). Given a nonnegative symmetric \(N \times N\) matrix \(A = (a_{ij})_{i,j = 1}^N\), the Laplacian L of A is defined by \(L = D - A\), with \(D = \mathrm {diag} (d_{1}, \ldots , d_{N})\) and \(d_{k} = \sum _{j=1}^{N} a_{kj}\).
 
Literature
1.
go back to reference S. M. Ahn and S.-Y. Ha. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises. J. Math. Phys., 51(10):103301, 2010.MathSciNetCrossRefMATH S. M. Ahn and S.-Y. Ha. Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises. J. Math. Phys., 51(10):103301, 2010.MathSciNetCrossRefMATH
2.
go back to reference G. Albi, M. Bongini, E. Cristiani, and D. Kalise. Invisible sparse control of self-organizing agents leaving unknown environments. To appear in SIAM J. Appl. Math., 2015.MATH G. Albi, M. Bongini, E. Cristiani, and D. Kalise. Invisible sparse control of self-organizing agents leaving unknown environments. To appear in SIAM J. Appl. Math., 2015.MATH
3.
go back to reference F. Arvin, J. C. Murray, L. Shi, C. Zhang, and S. Yue. Development of an autonomous micro robot for swarm robotics. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), pages 635–640. IEEE, 2014. F. Arvin, J. C. Murray, L. Shi, C. Zhang, and S. Yue. Development of an autonomous micro robot for swarm robotics. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), pages 635–640. IEEE, 2014.
4.
go back to reference P. Bak. How nature works: the science of self-organized criticality. Springer Science & Business Media, 2013. P. Bak. How nature works: the science of self-organized criticality. Springer Science & Business Media, 2013.
5.
go back to reference M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. P. Natl. Acad. Sci. USA, 105(4):1232–1237, 2008.CrossRef M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. P. Natl. Acad. Sci. USA, 105(4):1232–1237, 2008.CrossRef
6.
go back to reference S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, and J. Stiglitz. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J. Econ. Dyn. Control, 36(8):1121–1141, 2012.CrossRefMATH S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, and J. Stiglitz. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J. Econ. Dyn. Control, 36(8):1121–1141, 2012.CrossRefMATH
7.
go back to reference M. Bongini. Sparse Optimal Control of Multiagent Systems. PhD thesis, Technische Universität München, 2016. M. Bongini. Sparse Optimal Control of Multiagent Systems. PhD thesis, Technische Universität München, 2016.
8.
go back to reference M. Bongini and M. Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterog. Media, 9(1):1–31, 2014.MathSciNetCrossRefMATH M. Bongini and M. Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterog. Media, 9(1):1–31, 2014.MathSciNetCrossRefMATH
9.
go back to reference M. Bongini, M. Fornasier, F. Frölich, and L. Hagverdi. Sparse control of force field dynamics. In International Conference on NETwork Games, COntrol and OPtimization, October 2014. M. Bongini, M. Fornasier, F. Frölich, and L. Hagverdi. Sparse control of force field dynamics. In International Conference on NETwork Games, COntrol and OPtimization, October 2014.
10.
go back to reference M. Bongini, M. Fornasier, O. Junge, and B. Scharf. Sparse control of alignment models in high dimension. Netw. Heterog. Media, 10(3):647–697, 2015.MathSciNetCrossRefMATH M. Bongini, M. Fornasier, O. Junge, and B. Scharf. Sparse control of alignment models in high dimension. Netw. Heterog. Media, 10(3):647–697, 2015.MathSciNetCrossRefMATH
11.
go back to reference M. Bongini, M. Fornasier, and D. Kalise. (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Discrete Contin. Dyn. Syst., 35(9):4071–4094, 2015.MathSciNetCrossRefMATH M. Bongini, M. Fornasier, and D. Kalise. (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Discrete Contin. Dyn. Syst., 35(9):4071–4094, 2015.MathSciNetCrossRefMATH
12.
go back to reference A. Borzì and S. Wongkaew. Modeling and control through leadership of a refined flocking system. Math. Models Methods Appl. Sci., 25(02):255–282, 2015.MathSciNetCrossRefMATH A. Borzì and S. Wongkaew. Modeling and control through leadership of a refined flocking system. Math. Models Methods Appl. Sci., 25(02):255–282, 2015.MathSciNetCrossRefMATH
13.
go back to reference S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-organization in biological systems. Princeton University Press, 2002. S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-organization in biological systems. Princeton University Press, 2002.
14.
go back to reference E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.MathSciNetCrossRefMATH E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.MathSciNetCrossRefMATH
15.
go back to reference M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Math. Control Relat. Fields, 3(4):447–466, 2013.MathSciNetCrossRefMATH M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Math. Control Relat. Fields, 3(4):447–466, 2013.MathSciNetCrossRefMATH
16.
go back to reference M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and control of alignment models. Math. Models Methods Appl. Sci., 25(03):521–564, 2015.MathSciNetCrossRefMATH M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and control of alignment models. Math. Models Methods Appl. Sci., 25(03):521–564, 2015.MathSciNetCrossRefMATH
17.
go back to reference J. A. Carrillo, M. R. D’Orsogna, and V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models, 2(2):363–378, 2009.MathSciNetCrossRefMATH J. A. Carrillo, M. R. D’Orsogna, and V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models, 2(2):363–378, 2009.MathSciNetCrossRefMATH
18.
go back to reference J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010.MathSciNetCrossRefMATH J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010.MathSciNetCrossRefMATH
19.
go back to reference J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic models of swarming. In Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 297–336. Birkhäuser Boston, 2010. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic models of swarming. In Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 297–336. Birkhäuser Boston, 2010.
20.
go back to reference J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective Dynamics from Bacteria to Crowds, pages 1–46. Springer, 2014. J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective Dynamics from Bacteria to Crowds, pages 1–46. Springer, 2014.
21.
go back to reference E. Casas, C. Clason, and K. Kunisch. Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim., 50(4):1735–1752, 2012.MathSciNetCrossRefMATH E. Casas, C. Clason, and K. Kunisch. Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim., 50(4):1735–1752, 2012.MathSciNetCrossRefMATH
22.
go back to reference Y.-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi, and L. S. Chayes. State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D, 232(1):33–47, 2007.MathSciNetCrossRefMATH Y.-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi, and L. S. Chayes. State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D, 232(1):33–47, 2007.MathSciNetCrossRefMATH
23.
go back to reference F. R. K. Chung. Spectral graph theory, volume 92. American Mathematical Society, 1997. F. R. K. Chung. Spectral graph theory, volume 92. American Mathematical Society, 1997.
24.
25.
go back to reference M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst., Man, Cybern., Syst., 13(5):815–826, 1983. M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst., Man, Cybern., Syst., 13(5):815–826, 1983.
26.
go back to reference J. Cortés and F. Bullo. Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim., 44(5):1543–1574, 2005.MathSciNetCrossRefMATH J. Cortés and F. Bullo. Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim., 44(5):1543–1574, 2005.MathSciNetCrossRefMATH
27.
go back to reference I. D. Couzin and N. R. Franks. Self-organized lane formation and optimized traffic flow in army ants. P. Roy. Soc. Lond. B Bio., 270(1511):139–146, 2003.CrossRef I. D. Couzin and N. R. Franks. Self-organized lane formation and optimized traffic flow in army ants. P. Roy. Soc. Lond. B Bio., 270(1511):139–146, 2003.CrossRef
28.
go back to reference I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433:513–516, 2005.CrossRef I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433:513–516, 2005.CrossRef
29.
go back to reference A. J. Craig and I. Flügge-Lotz. Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control. J. Fluids Eng., 87(1):39–58, 1965. A. J. Craig and I. Flügge-Lotz. Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control. J. Fluids Eng., 87(1):39–58, 1965.
30.
go back to reference E. Cristiani, B. Piccoli, and A. Tosin. Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In Mathematical modeling of collective behavior in socio-economic and life sciences, pages 337–364. Springer, 2010. E. Cristiani, B. Piccoli, and A. Tosin. Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In Mathematical modeling of collective behavior in socio-economic and life sciences, pages 337–364. Springer, 2010.
31.
go back to reference E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul., 9(1):155–182, 2011.MathSciNetCrossRefMATH E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul., 9(1):155–182, 2011.MathSciNetCrossRefMATH
32.
go back to reference F. Cucker and J.-G. Dong. A general collision-avoiding flocking framework. IEEE Trans. Automat. Control, 56(5):1124–1129, 2011.MathSciNetCrossRef F. Cucker and J.-G. Dong. A general collision-avoiding flocking framework. IEEE Trans. Automat. Control, 56(5):1124–1129, 2011.MathSciNetCrossRef
33.
go back to reference F. Cucker and J.-G. Dong. A conditional, collision-avoiding, model for swarming. Discrete Contin. Dynam. Systems, 34(3):1009–1020, 2014.MathSciNetCrossRefMATH F. Cucker and J.-G. Dong. A conditional, collision-avoiding, model for swarming. Discrete Contin. Dynam. Systems, 34(3):1009–1020, 2014.MathSciNetCrossRefMATH
34.
36.
go back to reference F. Cucker, S. Smale, and D. Zhou. Modeling language evolution. Found. Comput. Math., 4(5):315–343, 2004.MathSciNetMATH F. Cucker, S. Smale, and D. Zhou. Modeling language evolution. Found. Comput. Math., 4(5):315–343, 2004.MathSciNetMATH
37.
go back to reference S. Currarini, M. O. Jackson, and P. Pin. An economic model of friendship: Homophily, minorities, and segregation. Econometrica, 77(4):1003–1045, 2009.MathSciNetCrossRefMATH S. Currarini, M. O. Jackson, and P. Pin. An economic model of friendship: Homophily, minorities, and segregation. Econometrica, 77(4):1003–1045, 2009.MathSciNetCrossRefMATH
38.
go back to reference F. Dalmao and E. Mordecki. Cucker-Smale flocking under hierarchical leadership and random interactions. SIAM J. Appl. Math., 71(4):1307–1316, 2011.MathSciNetCrossRefMATH F. Dalmao and E. Mordecki. Cucker-Smale flocking under hierarchical leadership and random interactions. SIAM J. Appl. Math., 71(4):1307–1316, 2011.MathSciNetCrossRefMATH
39.
go back to reference J. Dickinson. Animal social behavior. In Encyclopaedia Britannica Online. Encyclopaedia Britannica Inc., 2016. J. Dickinson. Animal social behavior. In Encyclopaedia Britannica Online. Encyclopaedia Britannica Inc., 2016.
41.
go back to reference M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006.CrossRef M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006.CrossRef
42.
go back to reference Y. Eldar and H. Rauhut. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inform. Theory, 56(1):505–519, 2010.MathSciNetCrossRef Y. Eldar and H. Rauhut. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inform. Theory, 56(1):505–519, 2010.MathSciNetCrossRef
43.
go back to reference J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control, 49(9):1465–1476, 2004.MathSciNetCrossRef J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control, 49(9):1465–1476, 2004.MathSciNetCrossRef
44.
go back to reference A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, 1988. A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, 1988.
45.
go back to reference M. Fornasier and H. Rauhut. Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal., 46(2):577–613, 2008.MathSciNetCrossRefMATH M. Fornasier and H. Rauhut. Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal., 46(2):577–613, 2008.MathSciNetCrossRefMATH
46.
go back to reference M. Fornasier and H. Rauhut. Handbook of Mathematical Methods in Imaging, chapter Compressive Sensing, pages 187–228. Springer-Verlag, 2010. M. Fornasier and H. Rauhut. Handbook of Mathematical Methods in Imaging, chapter Compressive Sensing, pages 187–228. Springer-Verlag, 2010.
47.
go back to reference S.-Y. Ha, J.-G. Liu, et al. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci., 7(2):297–325, 2009.MathSciNetCrossRefMATH S.-Y. Ha, J.-G. Liu, et al. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci., 7(2):297–325, 2009.MathSciNetCrossRefMATH
48.
go back to reference S.-Y. Ha, T. Ha, and J.-H. Kim. Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings. IEEE Trans. Automat. Control, 55(7):1679–1683, 2010.MathSciNetCrossRef S.-Y. Ha, T. Ha, and J.-H. Kim. Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings. IEEE Trans. Automat. Control, 55(7):1679–1683, 2010.MathSciNetCrossRef
49.
go back to reference G. Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, 1968.CrossRef G. Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, 1968.CrossRef
50.
go back to reference J. Haskovec. A note on the consensus finding problem in communication networks with switching topologies. Appl. Anal., 94(5):991–998, 2015.MathSciNetCrossRefMATH J. Haskovec. A note on the consensus finding problem in communication networks with switching topologies. Appl. Anal., 94(5):991–998, 2015.MathSciNetCrossRefMATH
51.
go back to reference R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simulat., 5(3), 2002. R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simulat., 5(3), 2002.
52.
go back to reference R. Herzog, G. Stadler, and G. Wachsmuth. Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim., 50(2):943–963, 2012.MathSciNetCrossRefMATH R. Herzog, G. Stadler, and G. Wachsmuth. Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim., 50(2):943–963, 2012.MathSciNetCrossRefMATH
53.
go back to reference E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26(3):399–415, 1970.CrossRefMATH E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26(3):399–415, 1970.CrossRefMATH
54.
go back to reference A. Kirman, S. Markose, S. Giansante, and P. Pin. Marginal contribution, reciprocity and equity in segregated groups: Bounded rationality and self-organization in social networks. J. Econ. Dyn. Control, 31(6):2085–2107, 2007.MathSciNetCrossRefMATH A. Kirman, S. Markose, S. Giansante, and P. Pin. Marginal contribution, reciprocity and equity in segregated groups: Bounded rationality and self-organization in social networks. J. Econ. Dyn. Control, 31(6):2085–2107, 2007.MathSciNetCrossRefMATH
55.
go back to reference A. Koch and D. White. The social lifestyle of myxobacteria. Bioessays 20, pages 1030–1038, 1998.CrossRef A. Koch and D. White. The social lifestyle of myxobacteria. Bioessays 20, pages 1030–1038, 1998.CrossRef
56.
go back to reference S. Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008. S. Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008.
57.
go back to reference M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol., pages 415–444, 2001. M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol., pages 415–444, 2001.
58.
go back to reference B. Mohar. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, editors, Graph theory, Combinatorics, and Applications, volume 2, pages 871–898. Wiley, 1991. B. Mohar. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, editors, Graph theory, Combinatorics, and Applications, volume 2, pages 871–898. Wiley, 1991.
59.
go back to reference L. Moreau. Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control, 50(2):169–182, 2005.MathSciNetCrossRef L. Moreau. Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control, 50(2):169–182, 2005.MathSciNetCrossRef
62.
go back to reference H. Niwa. Self-organizing dynamic model of fish schooling. J. Theor. Biol., 171:123–136, 1994.CrossRef H. Niwa. Self-organizing dynamic model of fish schooling. J. Theor. Biol., 171:123–136, 1994.CrossRef
63.
go back to reference F. Paganini, J. Doyle, and S. Low. Scalable laws for stable network congestion control. In Proceedings of the 40th IEEE Conference on Decision and Control, volume 1, pages 185–190. IEEE, 2001. F. Paganini, J. Doyle, and S. Low. Scalable laws for stable network congestion control. In Proceedings of the 40th IEEE Conference on Decision and Control, volume 1, pages 185–190. IEEE, 2001.
64.
go back to reference J. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 294:99–101, 1999.CrossRef J. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 294:99–101, 1999.CrossRef
65.
go back to reference J. Parrish, S. Viscido, and D. Gruenbaum. Self-organized fish schools: An examination of emergent properties. Biol. Bull., 202:296–305, 2002.CrossRef J. Parrish, S. Viscido, and D. Gruenbaum. Self-organized fish schools: An examination of emergent properties. Biol. Bull., 202:296–305, 2002.CrossRef
66.
go back to reference L. Perea, P. Elosegui, and G. Gómez. Extension of the Cucker-Smale control law to space flight formations. J. Guid. Control Dynam., 32(2):527–537, 2009.CrossRef L. Perea, P. Elosegui, and G. Gómez. Extension of the Cucker-Smale control law to space flight formations. J. Guid. Control Dynam., 32(2):527–537, 2009.CrossRef
67.
go back to reference B. Perthame. Transport Equations in Biology. Basel: Birkhäuser, 2007.MATH B. Perthame. Transport Equations in Biology. Basel: Birkhäuser, 2007.MATH
68.
go back to reference L. Petrovic, M. Henne, and J. Anderson. Volumetric Methods for Simulation and Rendering of Hair. Technical report, Pixar Animation Studios, 2005. L. Petrovic, M. Henne, and J. Anderson. Volumetric Methods for Simulation and Rendering of Hair. Technical report, Pixar Animation Studios, 2005.
69.
go back to reference C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4):25–34, 1987.CrossRef C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4):25–34, 1987.CrossRef
70.
go back to reference W. Romey. Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Model., 92:65–77, 1996.CrossRef W. Romey. Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Model., 92:65–77, 1996.CrossRef
72.
go back to reference M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes. A statistical model of criminal behavior. Math. Models Methods Appl. Sci., 18(suppl.):1249–1267, 2008. M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes. A statistical model of criminal behavior. Math. Models Methods Appl. Sci., 18(suppl.):1249–1267, 2008.
73.
go back to reference G. Stadler. Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl., 44(2):159–181, 2009.MathSciNetCrossRefMATH G. Stadler. Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl., 44(2):159–181, 2009.MathSciNetCrossRefMATH
74.
go back to reference H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching networks. IEEE Trans. Automat. Control, 52(5):863–868, 2007.MathSciNetCrossRef H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching networks. IEEE Trans. Automat. Control, 52(5):863–868, 2007.MathSciNetCrossRef
75.
go back to reference J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical xy model: How birds fly together. Phys. Rev. Lett., 75:4326–4329, 1995.CrossRef J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical xy model: How birds fly together. Phys. Rev. Lett., 75:4326–4329, 1995.CrossRef
76.
go back to reference T. Vicsek and A. Zafeiris. Collective motion. Phys. Rep., 517(3):71–140, 2012.CrossRef T. Vicsek and A. Zafeiris. Collective motion. Phys. Rep., 517(3):71–140, 2012.CrossRef
77.
go back to reference T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226, 1995.MathSciNetCrossRef T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226, 1995.MathSciNetCrossRef
78.
go back to reference J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.
79.
go back to reference G. Wachsmuth and D. Wachsmuth. Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var., 17(3):858–886, 2011.MathSciNetCrossRefMATH G. Wachsmuth and D. Wachsmuth. Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var., 17(3):858–886, 2011.MathSciNetCrossRefMATH
80.
go back to reference G. Weisbuch, G. Deffuant, F. Amblard, and J.-P. Nadal. Meet, discuss, and segregate! Complexity, 7(3):55–63, 2002.CrossRef G. Weisbuch, G. Deffuant, F. Amblard, and J.-P. Nadal. Meet, discuss, and segregate! Complexity, 7(3):55–63, 2002.CrossRef
81.
go back to reference S. Wongkaew, M. Caponigro, and A. Borzì. On the control through leadership of the Hegselmann–Krause opinion formation model. Math. Models Methods Appl. Sci., 25(03):565–585, 2015.MathSciNetCrossRefMATH S. Wongkaew, M. Caponigro, and A. Borzì. On the control through leadership of the Hegselmann–Krause opinion formation model. Math. Models Methods Appl. Sci., 25(03):565–585, 2015.MathSciNetCrossRefMATH
82.
go back to reference C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini, and D. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106:5464–5469, 2009.CrossRef C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini, and D. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106:5464–5469, 2009.CrossRef
Metadata
Title
Sparse Control of Multiagent Systems
Authors
Mattia Bongini
Massimo Fornasier
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-49996-3_5

Premium Partners