Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Sparse-View CT Reconstruction Using Wasserstein GANs

Authors : Franz Thaler, Kerstin Hammernik, Christian Payer, Martin Urschler, Darko Štern

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

We propose a 2D computed tomography (CT) slice image reconstruction method from a limited number of projection images using Wasserstein generative adversarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an \(L_1\) content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two loss functions and compare to a convolutional neural network (CNN) optimized on \(L_1\) and the Filtered Backprojection (FBP) method. The evaluation shows that the results generated by the machine learning based approaches are substantially better than those from the FBP method. In contrast to the blurrier looking images generated by the CNNs trained on \(L_1\), the wGANs results appear sharper and seem to contain more structural information. We show that a certain amount of projection data is needed to get a correct representation of the anatomical correspondences.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
2.
go back to reference Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)
3.
go back to reference Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef
4.
go back to reference Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017) CrossRef Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017) CrossRef
5.
go back to reference Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017) Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
8.
go back to reference Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. Accepted at International Conference on Medical Image Computing and Computer-Assisted Intervention (2018) Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. Accepted at International Conference on Medical Image Computing and Computer-Assisted Intervention (2018)
9.
go back to reference Thaler, F., Payer, C., Štern, D.: Volumetric reconstruction from a limited number of digitally reconstructed radiographs using CNNs. In: Proceedings of the OAGM Workshop 2018, pp. 13–19. Verlag der TU Graz (2018) Thaler, F., Payer, C., Štern, D.: Volumetric reconstruction from a limited number of digitally reconstructed radiographs using CNNs. In: Proceedings of the OAGM Workshop 2018, pp. 13–19. Verlag der TU Graz (2018)
10.
go back to reference Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 8(1), 6700 (2018) CrossRef Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 8(1), 6700 (2018) CrossRef
11.
go back to reference Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef
12.
go back to reference Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018) CrossRef Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018) CrossRef
13.
go back to reference Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8(1), 2575 (2018) CrossRef Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8(1), 2575 (2018) CrossRef
Metadata
Title
Sparse-View CT Reconstruction Using Wasserstein GANs
Authors
Franz Thaler
Kerstin Hammernik
Christian Payer
Martin Urschler
Darko Štern
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_9

Premium Partner