Skip to main content
Top

2023 | OriginalPaper | Chapter

14. Spatial and Camera Methods

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Estimating Presence and Abundance of Closed Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Estimating abundance using capture-recapture methods for animals that move around in a closed population can be difficult. One way of dealing with this, as well as for some stationary populations, is to record the locations or centers of activity of the animals or objects (e.g., animal signs) using so-called spatial capture-recapture (SCR) methods. The probability of capture can then be modeled on the distance of an animal from a trap location.
The “trap” can be any kind of recording device such as a personal observation or camera, or an array of proximity or acoustical detectors. It can also be a single or multicatch trap. Sometimes telemetry can be used at the same time and can be combined with the capture data. SRC can also be combined with occupancy and distance sampling data, as well as with adaptive cluster sampling. Information on activity centers can be used to study animal interactions.
Bayesian models are extensively used and can also be combined with frequency methods. Other extensions to SCR are the use of stratification, presence-absence data only, and, in particular, spatial resight models. Different sightings for marked and unmarked can be allowed for as well as the possible lack of individual recognition.
With technological advances, camera methods are being increasingly used to estimate densities of elusive terrestrial mammals, animals with low densities, and those animals difficult to capture or detect. Along with DNA methods, which are also considered, they have many advantages such as being noninvasive. The design of SCR models is considered. Many examples and applications are given throughout the chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ait Kaci Azzou, S., Singer, L., Aebischer, T., Caduff, M., Wolf, B., & Wegmann, D. (2021). A sparse observation model to quantify species distributions and their overlap in space and time. Ecography, 44(6), 928–940.CrossRef Ait Kaci Azzou, S., Singer, L., Aebischer, T., Caduff, M., Wolf, B., & Wegmann, D. (2021). A sparse observation model to quantify species distributions and their overlap in space and time. Ecography, 44(6), 928–940.CrossRef
go back to reference Alonso, R. S., McClintock, B. T., Lyren, L. M., Boydston, E. E., & Crooks, K. R. (2015). Mark-recapture and mark-resight methods for estimating abundance with remote cameras: A carnivore case study. PLoS One, 10(3), e0123032.CrossRef Alonso, R. S., McClintock, B. T., Lyren, L. M., Boydston, E. E., & Crooks, K. R. (2015). Mark-recapture and mark-resight methods for estimating abundance with remote cameras: A carnivore case study. PLoS One, 10(3), e0123032.CrossRef
go back to reference Arzoumanian, Z., Holmberg, J., & Norman, B. (2005). An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. Journal of Applied Ecology, 42(6), 999–1011.CrossRef Arzoumanian, Z., Holmberg, J., & Norman, B. (2005). An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. Journal of Applied Ecology, 42(6), 999–1011.CrossRef
go back to reference Augustine, B. C., Royle, J. A., & et al. (2018). Spatial capture-recapture with partial identity: An application to camera traps. Annals of Applied Statistics, 12(1), 67–95. Augustine, B. C., Royle, J. A., & et al. (2018). Spatial capture-recapture with partial identity: An application to camera traps. Annals of Applied Statistics, 12(1), 67–95.
go back to reference Augustine, B. C., Royle, J. A., Murphy, S. M., Chandler, R. B, Cox, J. J., & Kelly, M. J. (2019). Spatial capture-recapture for categorically marked populations with an application to genetic capture-recapture. Ecosphere, 10(4), e02627.CrossRef Augustine, B. C., Royle, J. A., Murphy, S. M., Chandler, R. B, Cox, J. J., & Kelly, M. J. (2019). Spatial capture-recapture for categorically marked populations with an application to genetic capture-recapture. Ecosphere, 10(4), e02627.CrossRef
go back to reference Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwartz, M. K., & Luikart, G. (2009). Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources, 9(5), 1279–1301.CrossRef Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwartz, M. K., & Luikart, G. (2009). Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources, 9(5), 1279–1301.CrossRef
go back to reference Borchers, D. L. (2012). A non-technical overview of spatially explicit capture-recapture models. Journal of Ornithology, 152(Suppl 2), 1–10. Borchers, D. L. (2012). A non-technical overview of spatially explicit capture-recapture models. Journal of Ornithology, 152(Suppl 2), 1–10.
go back to reference Borchers, D. L., & Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64(2), 377–385.CrossRef Borchers, D. L., & Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64(2), 377–385.CrossRef
go back to reference Borchers, D., & Fewster, R. (2016). Spatial capture–recapture models. Statistical Science, 31(2), 219–232.CrossRef Borchers, D., & Fewster, R. (2016). Spatial capture–recapture models. Statistical Science, 31(2), 219–232.CrossRef
go back to reference Borchers, D. L., & Marques, T. A. (2017). From distance sampling to spatial capture–recapture. Advances in Statistical Analysis, 101(4), 475–494.CrossRef Borchers, D. L., & Marques, T. A. (2017). From distance sampling to spatial capture–recapture. Advances in Statistical Analysis, 101(4), 475–494.CrossRef
go back to reference Borchers, D. L., Stevenson, B. C., Kidney, D., Thomas, L., & Marques, T. A. (2015). A unifying model for capture–recapture and distance sampling surveys of wildlife populations. Journal of the American Statistical Association, 110(509), 195–204.CrossRef Borchers, D. L., Stevenson, B. C., Kidney, D., Thomas, L., & Marques, T. A. (2015). A unifying model for capture–recapture and distance sampling surveys of wildlife populations. Journal of the American Statistical Association, 110(509), 195–204.CrossRef
go back to reference Boulanger, J., Nielsen, S. E., & Stenhouse, G. B. (2018). Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta. Scientific Reports, 8(1), 5204–5215.CrossRef Boulanger, J., Nielsen, S. E., & Stenhouse, G. B. (2018). Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta. Scientific Reports, 8(1), 5204–5215.CrossRef
go back to reference Bradley, D., Conklin, E., & et al. (2017). Resetting predator baselines in coral reef ecosystems. Science Report, 7(1), 43131. Bradley, D., Conklin, E., & et al. (2017). Resetting predator baselines in coral reef ecosystems. Science Report, 7(1), 43131.
go back to reference Burgar, J. M., Stewart, F. E. C., Volpe, J. P., Fisher, J. T., & Burton, A. C. (2018). Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Global Ecology and Conservation, 15, e0411.CrossRef Burgar, J. M., Stewart, F. E. C., Volpe, J. P., Fisher, J. T., & Burton, A. C. (2018). Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Global Ecology and Conservation, 15, e0411.CrossRef
go back to reference Burton, A. C., Neilson, E., & et al. (2015). Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675–685. Burton, A. C., Neilson, E., & et al. (2015). Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675–685.
go back to reference Caravaggi, A., Banks, P. B., & et al. (2017). A review of camera trapping for conservation behaviour research. Remote Sensing in Ecology and Conservation, 3(3), 109–122. Caravaggi, A., Banks, P. B., & et al. (2017). A review of camera trapping for conservation behaviour research. Remote Sensing in Ecology and Conservation, 3(3), 109–122.
go back to reference Chandler, R. B., Muths, E., Sigafus, B. H., Schwalbe, C. R., Jarchow, C. J., & Hossack, B. R. (2015). Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. Journal of Applied Ecology, 52(5), 1325–1333.CrossRef Chandler, R. B., Muths, E., Sigafus, B. H., Schwalbe, C. R., Jarchow, C. J., & Hossack, B. R. (2015). Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. Journal of Applied Ecology, 52(5), 1325–1333.CrossRef
go back to reference Chandler, R. B., & Royle, J. A. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics, 7(2), 936–954.CrossRef Chandler, R. B., & Royle, J. A. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics, 7(2), 936–954.CrossRef
go back to reference Cheng, E., Hodges, K. E., Sollmann, R., & Mills, L. S. (2017). Genetic sampling for estimating density of common species. Ecology and Evolution, 7(16), 6210–6219.CrossRef Cheng, E., Hodges, K. E., Sollmann, R., & Mills, L. S. (2017). Genetic sampling for estimating density of common species. Ecology and Evolution, 7(16), 6210–6219.CrossRef
go back to reference Clare, J., McKinney, S. T., Depue, J. E., & Loftin, C. S. (2017). Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance. Ecological Applications, 27(7), 2031–2047.CrossRef Clare, J., McKinney, S. T., Depue, J. E., & Loftin, C. S. (2017). Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance. Ecological Applications, 27(7), 2031–2047.CrossRef
go back to reference Clobert, J., Baguette, M., Benton, T. G., & Bullock, J. M. (2012). Dispersal ecology and evolution. Oxford: Oxford University Press.CrossRef Clobert, J., Baguette, M., Benton, T. G., & Bullock, J. M. (2012). Dispersal ecology and evolution. Oxford: Oxford University Press.CrossRef
go back to reference Comer, S., Speldewinde, P., & et al. (2018). Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models. Scientific Reports, 8(1), 5335–5339. Comer, S., Speldewinde, P., & et al. (2018). Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models. Scientific Reports, 8(1), 5335–5339.
go back to reference Crum, N. J., Neyman, L. C., & Gowan, T. A. (2021). Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models. PLoS One, 16(5), e0252231.CrossRef Crum, N. J., Neyman, L. C., & Gowan, T. A. (2021). Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models. PLoS One, 16(5), e0252231.CrossRef
go back to reference Dawson, D. K., & Efford, M. G. (2009). Bird population density estimated from acoustic signals. Journal of Applied Ecology, 46(6), 1201–1209.CrossRef Dawson, D. K., & Efford, M. G. (2009). Bird population density estimated from acoustic signals. Journal of Applied Ecology, 46(6), 1201–1209.CrossRef
go back to reference Dey, S., Delampady, M., & Gopalaswamy, A. M. (2019). Bayesian model selection for spatial capture–recapture models. Ecology and Evolution, 9(20), 11569–11583.CrossRef Dey, S., Delampady, M., & Gopalaswamy, A. M. (2019). Bayesian model selection for spatial capture–recapture models. Ecology and Evolution, 9(20), 11569–11583.CrossRef
go back to reference Dillon, A., & Kelly, M. J. (2007). Ocelot (Leopardus pardalis) in Belize: The impact of trap spacing and distance moved on density estimates. Oryx, 41(4), 469–477.CrossRef Dillon, A., & Kelly, M. J. (2007). Ocelot (Leopardus pardalis) in Belize: The impact of trap spacing and distance moved on density estimates. Oryx, 41(4), 469–477.CrossRef
go back to reference Dorazio, R. M. (2013). Bayes and Empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS One, 8(12), e84017.CrossRef Dorazio, R. M. (2013). Bayes and Empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS One, 8(12), e84017.CrossRef
go back to reference Du Preez, B. D., Loveridge, A. J., & Macdonald, D. W. (2014). To bait or not to bait: A comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation, 176, 153–116.CrossRef Du Preez, B. D., Loveridge, A. J., & Macdonald, D. W. (2014). To bait or not to bait: A comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation, 176, 153–116.CrossRef
go back to reference Efford, M. G. (2004). Density estimation in live-trapping studies. Oikos, 106(3), 598–610.CrossRef Efford, M. G. (2004). Density estimation in live-trapping studies. Oikos, 106(3), 598–610.CrossRef
go back to reference Efford, M. G. (2011). Estimation of population density by spatially explicit capture–recapture analysis of data from area searches. Ecology, 92(12), 2202–2207.CrossRef Efford, M. G. (2011). Estimation of population density by spatially explicit capture–recapture analysis of data from area searches. Ecology, 92(12), 2202–2207.CrossRef
go back to reference Efford, M. G. (2019). Non-circular home ranges and the estimation of population density. Ecology, 100(2), e02580.CrossRef Efford, M. G. (2019). Non-circular home ranges and the estimation of population density. Ecology, 100(2), e02580.CrossRef
go back to reference Efford, M. G., Borchers, D. L., & Byrom, A. E. (2009). Density estimation by spatially explicit capture-recapture: Likelihood-based methods. In Thomson, D. L., Cooch, E. G., & Conroy, M. J. (Eds.), Modeling demographic processes in marked populations. Environmental and Ecological Statistics (Vol. 3). Boston, MA: Springer. Efford, M. G., Borchers, D. L., & Byrom, A. E. (2009). Density estimation by spatially explicit capture-recapture: Likelihood-based methods. In Thomson, D. L., Cooch, E. G., & Conroy, M. J. (Eds.), Modeling demographic processes in marked populations. Environmental and Ecological Statistics (Vol. 3). Boston, MA: Springer.
go back to reference Efford, M. G., Borchers, D L., Mowat, G., & Ginenez, O (2013).Varying effort in capture-recapture studies. Methods in Ecology and Evolution, 4(7), 629–636.CrossRef Efford, M. G., Borchers, D L., Mowat, G., & Ginenez, O (2013).Varying effort in capture-recapture studies. Methods in Ecology and Evolution, 4(7), 629–636.CrossRef
go back to reference Efford, M. G., Dawson, D. K., & Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology, 90(10), 2676–2682.CrossRef Efford, M. G., Dawson, D. K., & Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology, 90(10), 2676–2682.CrossRef
go back to reference Efford, M. G., & Fewster, R. M. (2013.) Estimating population size by spatially explicit capture-recapture. Oikos, 122(6), 918–928.CrossRef Efford, M. G., & Fewster, R. M. (2013.) Estimating population size by spatially explicit capture-recapture. Oikos, 122(6), 918–928.CrossRef
go back to reference Efford, M. G., & Hunter, C. M. (2018). Spatial capture-mark-resight estimation of animal population density. Biometrics, 74(2), 411–420.CrossRef Efford, M. G., & Hunter, C. M. (2018). Spatial capture-mark-resight estimation of animal population density. Biometrics, 74(2), 411–420.CrossRef
go back to reference Efford, M. G., & Mowat, G. (2014). Compensatory heterogeneity in spatially explicit capture-recapture data. Ecology, 95(5), 1341–1348.CrossRef Efford, M. G., & Mowat, G. (2014). Compensatory heterogeneity in spatially explicit capture-recapture data. Ecology, 95(5), 1341–1348.CrossRef
go back to reference Fisher, J. T., Heim, N., Code, S., & Paczkowski, J. (2016). Grizzly bear noninvasive genetic tagging surveys: Estimating the magnitude of missed detections. PLoS One, 11(9), e0161055.CrossRef Fisher, J. T., Heim, N., Code, S., & Paczkowski, J. (2016). Grizzly bear noninvasive genetic tagging surveys: Estimating the magnitude of missed detections. PLoS One, 11(9), e0161055.CrossRef
go back to reference Fiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1–23.CrossRef Fiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1–23.CrossRef
go back to reference Foster, R. J., & Harmsen, B. J. (2012). A critique of density estimation from camera-trap data. Journal of Wildlife Management, 76(2), 224–236.CrossRef Foster, R. J., & Harmsen, B. J. (2012). A critique of density estimation from camera-trap data. Journal of Wildlife Management, 76(2), 224–236.CrossRef
go back to reference Furnas, B. J., Landers, R. H., Callas, R. L., & Matthews, S. M. (2017). Estimating population size of Fishers (Pekania pennanti) using camera stations and auxiliary data on home range size. Ecosphere, 8(3), e01747.CrossRef Furnas, B. J., Landers, R. H., Callas, R. L., & Matthews, S. M. (2017). Estimating population size of Fishers (Pekania pennanti) using camera stations and auxiliary data on home range size. Ecosphere, 8(3), e01747.CrossRef
go back to reference Gardner, B., Royle, J. A., & Wegan, M. T. (2009). Hierarchical models for estimating density from DNA mark-recapture studies. Ecology, 90(4), 1106–1115.CrossRef Gardner, B., Royle, J. A., & Wegan, M. T. (2009). Hierarchical models for estimating density from DNA mark-recapture studies. Ecology, 90(4), 1106–1115.CrossRef
go back to reference Gardner, B., Royle, J. A., Wegan, M. T., Rainbolt, R. E., & Curtis, P. D. (2010). Estimating black bear density using DNA data from hair snares. Journal of Wildlife Management, 74(2), 318–325.CrossRef Gardner, B., Royle, J. A., Wegan, M. T., Rainbolt, R. E., & Curtis, P. D. (2010). Estimating black bear density using DNA data from hair snares. Journal of Wildlife Management, 74(2), 318–325.CrossRef
go back to reference Gerber, B. D., Karpanty, S. M., & Kelly, M. J. (2012). Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Populatioin Ecology, 54(1), 43–54.CrossRef Gerber, B. D., Karpanty, S. M., & Kelly, M. J. (2012). Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Populatioin Ecology, 54(1), 43–54.CrossRef
go back to reference Gopalaswamy, A. M., Royle, J. A., Delampady, M., Nichols, J. D., Karanth, K. U., & Macdonald, D. W. (2012). Density estimation in tiger populations: Combining information for strong inference. Ecology, 93(7), 1741–1751.CrossRef Gopalaswamy, A. M., Royle, J. A., Delampady, M., Nichols, J. D., Karanth, K. U., & Macdonald, D. W. (2012). Density estimation in tiger populations: Combining information for strong inference. Ecology, 93(7), 1741–1751.CrossRef
go back to reference Gopalaswamy, A. M., Royle, J. A., Hines, J. E., & et al. (2012). Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods in Ecology and Evolution, 3(6), 1067–1072. Gopalaswamy, A. M., Royle, J. A., Hines, J. E., & et al. (2012). Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods in Ecology and Evolution, 3(6), 1067–1072.
go back to reference Griffiths, M., & van Schaik, C. P. (1993). The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife. Conservation Biology, 7(3), 623–626.CrossRef Griffiths, M., & van Schaik, C. P. (1993). The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife. Conservation Biology, 7(3), 623–626.CrossRef
go back to reference Ivan, J. S., White, G. C., Shenk, T. M. & Cooch, E. G. (2013). Using simulation to compare methods for estimating density from capture-recapture data. Ecology, 9(4), 817–826.CrossRef Ivan, J. S., White, G. C., Shenk, T. M. & Cooch, E. G. (2013). Using simulation to compare methods for estimating density from capture-recapture data. Ecology, 9(4), 817–826.CrossRef
go back to reference Jordan, M. J., Barrett, R. H., & Purcell, K. L. (2011). Camera trapping estimates of density and survival of fishers (Martes pernianti). Wildlife Biology, 17(3), 266–276.CrossRef Jordan, M. J., Barrett, R. H., & Purcell, K. L. (2011). Camera trapping estimates of density and survival of fishers (Martes pernianti). Wildlife Biology, 17(3), 266–276.CrossRef
go back to reference Kane, M. D., Morin, D. J., & Kelly, M. J. (2015). Potential for camera-traps and spatial mark-resight models to improve monitoring of the critically endangered West African lion (Panthera leo). Biodiversity Conservation, 24(14), 3527–3541.CrossRef Kane, M. D., Morin, D. J., & Kelly, M. J. (2015). Potential for camera-traps and spatial mark-resight models to improve monitoring of the critically endangered West African lion (Panthera leo). Biodiversity Conservation, 24(14), 3527–3541.CrossRef
go back to reference Karanth, K. U., Nichols, J. D., Kumar, N. S., & Hines, J. E. (2006). Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology, 87(11), 2925–2937.CrossRef Karanth, K. U., Nichols, J. D., Kumar, N. S., & Hines, J. E. (2006). Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology, 87(11), 2925–2937.CrossRef
go back to reference Kellner, K. (2015). jagsUI: A wrapper around rjags to streamline JAGS analyses. R package. Kellner, K. (2015). jagsUI: A wrapper around rjags to streamline JAGS analyses. R package.
go back to reference Lampa, S., Henle, K., Klenke, R., Hoehn, M., & Gruber, B. (2013). How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation: A review of available methods illustrated by a case study. Journal of Wildlife Management, 77(8), 1490–1511.CrossRef Lampa, S., Henle, K., Klenke, R., Hoehn, M., & Gruber, B. (2013). How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation: A review of available methods illustrated by a case study. Journal of Wildlife Management, 77(8), 1490–1511.CrossRef
go back to reference Linden, D. W., Fuller, A. K., Royle, J. A., & Hare, M. P. (2017). Examining the occupancy-density relationship for a low-density carnivore. Journal of Applied Ecology, 54(6), 2043–2052.CrossRef Linden, D. W., Fuller, A. K., Royle, J. A., & Hare, M. P. (2017). Examining the occupancy-density relationship for a low-density carnivore. Journal of Applied Ecology, 54(6), 2043–2052.CrossRef
go back to reference Linden, D. W., Sirén, A. P., & Pekins, P. J. (2018). Integrating telemetry data into spatial capture–recapture modifies inferences on multi-scale resource selection. Ecosphere, 9(4), e02203.CrossRef Linden, D. W., Sirén, A. P., & Pekins, P. J. (2018). Integrating telemetry data into spatial capture–recapture modifies inferences on multi-scale resource selection. Ecosphere, 9(4), e02203.CrossRef
go back to reference Lukacs, P. M., & Burnham, K. P. (2005). Review of capture–recapture methods applicable to noninvasive genetic sampling. Molecular Ecology, 30(15), 3909–3919.CrossRef Lukacs, P. M., & Burnham, K. P. (2005). Review of capture–recapture methods applicable to noninvasive genetic sampling. Molecular Ecology, 30(15), 3909–3919.CrossRef
go back to reference Manning, J. A., & Goldberg, C. S. (2010). Estimating population size using capture–recapture encounter histories created from point-coordinate locations of animals. Methods in Ecology and Evolution, 1(4), 389–397.CrossRef Manning, J. A., & Goldberg, C. S. (2010). Estimating population size using capture–recapture encounter histories created from point-coordinate locations of animals. Methods in Ecology and Evolution, 1(4), 389–397.CrossRef
go back to reference Marques, T. A., Thomas, L., Martin, S. W., & et al. (2012). Spatially explicit capture recapture methods to estimate minke whale abundance from data collected at bottom mounted hydrophones. Journal of Ornithology, 152(Sup2), 445–455. Marques, T. A., Thomas, L., Martin, S. W., & et al. (2012). Spatially explicit capture recapture methods to estimate minke whale abundance from data collected at bottom mounted hydrophones. Journal of Ornithology, 152(Sup2), 445–455.
go back to reference McClintock, B. T., Conn, P. B., Alonso, R. S., & Crooks, K. R. (2013). Integrated modeling of bilateral photo-identification data in mark-recapture analyses. Ecology, 94(7), 1464–1471.CrossRef McClintock, B. T., Conn, P. B., Alonso, R. S., & Crooks, K. R. (2013). Integrated modeling of bilateral photo-identification data in mark-recapture analyses. Ecology, 94(7), 1464–1471.CrossRef
go back to reference McClintock, B. T., White, G. C., Antolin, M. F., & Tripp, D. W. (2009a). Estimating abundance using mark-resight when sampling is with replacement or the number of marked individuals is unknown. Biometrics, 65, 236–246.CrossRef McClintock, B. T., White, G. C., Antolin, M. F., & Tripp, D. W. (2009a). Estimating abundance using mark-resight when sampling is with replacement or the number of marked individuals is unknown. Biometrics, 65, 236–246.CrossRef
go back to reference McClintock, B. T., White, G. C, Burnham, K. P., & Pryde, M. A.. (2009b). A generalized mixed effects model of abundance for mark-resight data when sampling is without replacement. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in marked populations (pp. 271–289). New York, U.S.: Springer.CrossRef McClintock, B. T., White, G. C, Burnham, K. P., & Pryde, M. A.. (2009b). A generalized mixed effects model of abundance for mark-resight data when sampling is without replacement. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in marked populations (pp. 271–289). New York, U.S.: Springer.CrossRef
go back to reference McGregor H. W., Legge, S., Potts, J., Jones, M. E., & Johnson, C. N. (2015). Density and home range of feral cats in north-western Australia. Wildlife Research, 42(3), 223–231.CrossRef McGregor H. W., Legge, S., Potts, J., Jones, M. E., & Johnson, C. N. (2015). Density and home range of feral cats in north-western Australia. Wildlife Research, 42(3), 223–231.CrossRef
go back to reference McLaughlin, P., & Bar, H. (2021). A spatial capture–recapture model with attractions between individuals. Environmetrics, 32(1), e2653.CrossRef McLaughlin, P., & Bar, H. (2021). A spatial capture–recapture model with attractions between individuals. Environmetrics, 32(1), e2653.CrossRef
go back to reference Meek, P. D., Ballard, G.-A., Vernes, K., & Fleming, P. J. S. (2015). The history of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy, 37(1), 1–12.CrossRef Meek, P. D., Ballard, G.-A., Vernes, K., & Fleming, P. J. S. (2015). The history of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy, 37(1), 1–12.CrossRef
go back to reference Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef
go back to reference Mollet, P., Kéry, M., Gardner, B., Pasinelli, G., & Royle, J. A. (2015). Estimating population size for capercaillie (Tetrao urogallus l.) with spatial capture-recapture models based on genotypes from one field sample. PLoS One, 10(6), e0129020. Mollet, P., Kéry, M., Gardner, B., Pasinelli, G., & Royle, J. A. (2015). Estimating population size for capercaillie (Tetrao urogallus l.) with spatial capture-recapture models based on genotypes from one field sample. PLoS One, 10(6), e0129020.
go back to reference Moqanaki, E. M., Milleret, C., Tourani, M., Dupont, P., & Bischof, R. (2021). Consequences of ignoring variable and spatially autocorrelated detection probability in spatial capture-recapture. Landscape Ecology, 36(10), 2879–2895.CrossRef Moqanaki, E. M., Milleret, C., Tourani, M., Dupont, P., & Bischof, R. (2021). Consequences of ignoring variable and spatially autocorrelated detection probability in spatial capture-recapture. Landscape Ecology, 36(10), 2879–2895.CrossRef
go back to reference Muñoz, D. J., Miller, D. A. W., Sutherland, C., & Grant, E. H. C. (2016). Using spatial capture-recapture to elucidate population processes and space-use in herpetological studies. Journal of Herpetology, 50(4), 570–581.CrossRef Muñoz, D. J., Miller, D. A. W., Sutherland, C., & Grant, E. H. C. (2016). Using spatial capture-recapture to elucidate population processes and space-use in herpetological studies. Journal of Herpetology, 50(4), 570–581.CrossRef
go back to reference Nakashima, Y., Fukasawa, K., Samejima, H., & Stephens, P. (2018). Estimating animal density without individual recognition using information derivable exclusively from camera traps. Journal of Applied Ecology, 55(2), 735–744.CrossRef Nakashima, Y., Fukasawa, K., Samejima, H., & Stephens, P. (2018). Estimating animal density without individual recognition using information derivable exclusively from camera traps. Journal of Applied Ecology, 55(2), 735–744.CrossRef
go back to reference Niedballa, J., Sollmann, R., Courtiol, A., & Wilting, A. (2016). cam-trapR: An R package for efficient camera trap data management. Methods in Ecology and Evolution, 7(12), 1457–1462.CrossRef Niedballa, J., Sollmann, R., Courtiol, A., & Wilting, A. (2016). cam-trapR: An R package for efficient camera trap data management. Methods in Ecology and Evolution, 7(12), 1457–1462.CrossRef
go back to reference O’Connell, F., Karanth, K. U., & Nichols, J. D. (Eds.). (2011). Camera traps in animal ecology: Methods and analyses. Heidelberg: Springer. O’Connell, F., Karanth, K. U., & Nichols, J. D. (Eds.). (2011). Camera traps in animal ecology: Methods and analyses. Heidelberg: Springer.
go back to reference Oedekoven, C. S., Marques, T. A., & et al. (2021). A comparison of three methods for estimating call densities of migrating bowhead whales using passive acoustic monitoring. Environmental and Ecological Statistics, 29(1), 101–125. Oedekoven, C. S., Marques, T. A., & et al. (2021). A comparison of three methods for estimating call densities of migrating bowhead whales using passive acoustic monitoring. Environmental and Ecological Statistics, 29(1), 101–125.
go back to reference Palencia, P., Vicente, J., Barroso, P., Barasona, J.Á., Soriguer, R. C., & Acevedo, P. (2019). Estimating day range from camera-trap data: The animals’ behaviour as a key parameter. Journal of Zoology, 309(3), 182–190.CrossRef Palencia, P., Vicente, J., Barroso, P., Barasona, J.Á., Soriguer, R. C., & Acevedo, P. (2019). Estimating day range from camera-trap data: The animals’ behaviour as a key parameter. Journal of Zoology, 309(3), 182–190.CrossRef
go back to reference Parsons, A. W., Simons, T. R., Pollock, K. H., Stoskopf, M. K., Stocking, J. J., & O’Connell, Jr., A. F.( 2015). Camera traps and mark-resight models: The value of ancillary data for evaluating assumptions. Journal of Wildlife Management, 79(7), 1163–1172.CrossRef Parsons, A. W., Simons, T. R., Pollock, K. H., Stoskopf, M. K., Stocking, J. J., & O’Connell, Jr., A. F.( 2015). Camera traps and mark-resight models: The value of ancillary data for evaluating assumptions. Journal of Wildlife Management, 79(7), 1163–1172.CrossRef
go back to reference Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Computing (pp. 1–8). Vienna, Austria, March 20–22. Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Computing (pp. 1–8). Vienna, Austria, March 20–22.
go back to reference Plummer, M. (2016). Rjags: Bayesian graphical models using MCMC. In Interface to the JAGS MCMC library. Plummer, M. (2016). Rjags: Bayesian graphical models using MCMC. In Interface to the JAGS MCMC library.
go back to reference Popescu, V. D., de Valpine, P., & Sweitzer, R. A. (2014). Testing the consistency of wildlife data types before combining them: The case of camera traps and telemetry. Ecology and Evolution, 4(7), 933–943.CrossRef Popescu, V. D., de Valpine, P., & Sweitzer, R. A. (2014). Testing the consistency of wildlife data types before combining them: The case of camera traps and telemetry. Ecology and Evolution, 4(7), 933–943.CrossRef
go back to reference Ramsey, D. S. L., Caley, P. A., & Robley, A. (2015). Estimating population density from presence-absence data using a spatially explicit model. Journal of Wildlife Management, 79(3), 491–499.CrossRef Ramsey, D. S. L., Caley, P. A., & Robley, A. (2015). Estimating population density from presence-absence data using a spatially explicit model. Journal of Wildlife Management, 79(3), 491–499.CrossRef
go back to reference Reich, B. J., & Gardner, B. (2014). A spatial capture-recapture model for territorial species. Environmetrics, 25(8), 630–637.CrossRef Reich, B. J., & Gardner, B. (2014). A spatial capture-recapture model for territorial species. Environmetrics, 25(8), 630–637.CrossRef
go back to reference Rich, L. N., Kelly, M. J., & et al. (2014). Comparing capture–recapture, mark–resight, and spatial mark–resight models for estimating puma densities via camera traps. Journal of Mammalogy, 95(2), 382–391. Rich, L. N., Kelly, M. J., & et al. (2014). Comparing capture–recapture, mark–resight, and spatial mark–resight models for estimating puma densities via camera traps. Journal of Mammalogy, 95(2), 382–391.
go back to reference Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3), 322–337.CrossRef Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3), 322–337.CrossRef
go back to reference Romairone, J., Jiménez, J., Luque-Larena, J. J., & Mougeot, F. (2018). Spatial capture-recapture design and modelling for the study of small mammals. PLoS One, 13(6), e0198766.CrossRef Romairone, J., Jiménez, J., Luque-Larena, J. J., & Mougeot, F. (2018). Spatial capture-recapture design and modelling for the study of small mammals. PLoS One, 13(6), e0198766.CrossRef
go back to reference Rowcliffe, J. M., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. (2011). Quantifying the sensitivity of camera traps: An adapted distance sampling approach. Methods in Ecology and Evolution, 2(5), 464–476.CrossRef Rowcliffe, J. M., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. (2011). Quantifying the sensitivity of camera traps: An adapted distance sampling approach. Methods in Ecology and Evolution, 2(5), 464–476.CrossRef
go back to reference Rowcliffe, J. M., Field, J., Turvey, S. T., & Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45(4), 1228–1236.CrossRef Rowcliffe, J. M., Field, J., Turvey, S. T., & Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45(4), 1228–1236.CrossRef
go back to reference Rowcliffe, J. M., Kays., R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap. Methods in Ecology and Evolution, 5(11), 1170–1179.CrossRef Rowcliffe, J. M., Kays., R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap. Methods in Ecology and Evolution, 5(11), 1170–1179.CrossRef
go back to reference Royle, J. A., Chandler, R. B., Gazenski, K. D., & Graves., T. A. (2013a). Spatial capture-recapture models for jointly estimating population density and landscape connectivity. Ecology, 94(2), 287–294.CrossRef Royle, J. A., Chandler, R. B., Gazenski, K. D., & Graves., T. A. (2013a). Spatial capture-recapture models for jointly estimating population density and landscape connectivity. Ecology, 94(2), 287–294.CrossRef
go back to reference Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014). Spatial capture-recapture (1st ed.). Oxford: Elsevier. Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014). Spatial capture-recapture (1st ed.). Oxford: Elsevier.
go back to reference Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014a). scrbook: Companion to the book: Spatial capture recapture. R package version 0.21-0. Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014a). scrbook: Companion to the book: Spatial capture recapture. R package version 0.21-0.
go back to reference Royle, J. A., Chandler, R. B., Sun, C.C., & Fuller, A. K. (2013b). Integrating resource selection information with spatial capture–recapture. Methods in Ecology and Evolution, 4(6), 520–530.CrossRef Royle, J. A., Chandler, R. B., Sun, C.C., & Fuller, A. K. (2013b). Integrating resource selection information with spatial capture–recapture. Methods in Ecology and Evolution, 4(6), 520–530.CrossRef
go back to reference Royle, J. A., Chandler, R. B., Sun, C. C., Fuller, A. K., & O’Hara, R. B. (2014). Reply to Efford on “Integrating resource selection information with spatial capture–recapture”. Methods in Ecology and Evolution, 5(7), 603–605.CrossRef Royle, J. A., Chandler, R. B., Sun, C. C., Fuller, A. K., & O’Hara, R. B. (2014). Reply to Efford on “Integrating resource selection information with spatial capture–recapture”. Methods in Ecology and Evolution, 5(7), 603–605.CrossRef
go back to reference Royle, J. A., & Converse, S. J. (2014). Hierarchical spatial capture–recapture models: Modelling population density in strati!ed populations. Methods in Ecology and Evolution, 5(1), 37–43.CrossRef Royle, J. A., & Converse, S. J. (2014). Hierarchical spatial capture–recapture models: Modelling population density in strati!ed populations. Methods in Ecology and Evolution, 5(1), 37–43.CrossRef
go back to reference Royle, J. A., Fuller, A. K., & Sutherland, C. (2016). Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology, 58(1), 53–62.CrossRef Royle, J. A., Fuller, A. K., & Sutherland, C. (2016). Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology, 58(1), 53–62.CrossRef
go back to reference Royle, J. A., Fuller, A. K., & Sutherland, C. (2018). Unifying population and landscape ecology with spatial capture–recapture. Ecography, 41(3), 444–456.CrossRef Royle, J. A., Fuller, A. K., & Sutherland, C. (2018). Unifying population and landscape ecology with spatial capture–recapture. Ecography, 41(3), 444–456.CrossRef
go back to reference Royle, J. A., & Gardner, B. (2011). Hierarchical spatial capture–recapture models for estimating density from trapping arrays. In F. O’Connell, K. U. Karanth, & J. D. Nichols, (Eds.), Camera traps in animal ecology: Methods and analyses (pp. 163–190). Heidelberg: Springer.CrossRef Royle, J. A., & Gardner, B. (2011). Hierarchical spatial capture–recapture models for estimating density from trapping arrays. In F. O’Connell, K. U. Karanth, & J. D. Nichols, (Eds.), Camera traps in animal ecology: Methods and analyses (pp. 163–190). Heidelberg: Springer.CrossRef
go back to reference Royle, J. A., Karanth, K. U., Gopalaswamy, A. M., & Kumar, N. S. (2009). Bayesian inference in camera trapping studies for a class of spatial capture-recapture models. Ecology, 90(11), 3233–3244.CrossRef Royle, J. A., Karanth, K. U., Gopalaswamy, A. M., & Kumar, N. S. (2009). Bayesian inference in camera trapping studies for a class of spatial capture-recapture models. Ecology, 90(11), 3233–3244.CrossRef
go back to reference Royle, J. A., Kéry, M., & Guélat, J. (2011). Spatial capture-recapture models for search-encounter data. Methods in Ecology, 2(6), 602–611.CrossRef Royle, J. A., Kéry, M., & Guélat, J. (2011). Spatial capture-recapture models for search-encounter data. Methods in Ecology, 2(6), 602–611.CrossRef
go back to reference Royle, J. A., & Nichols, J. (2003). Estimating abundance from repeated presence-absence data or point counts. Ecology, 84(3), 777–790.CrossRef Royle, J. A., & Nichols, J. (2003). Estimating abundance from repeated presence-absence data or point counts. Ecology, 84(3), 777–790.CrossRef
go back to reference Royle, J. A., Nichols, J. D., Karanth, K. U., & Gopalaswamy, A. (2009). A hierarchical model for estimating density in camera trap studies. Journal of Applied Ecology, 46(1), 118–127.CrossRef Royle, J. A., Nichols, J. D., Karanth, K. U., & Gopalaswamy, A. (2009). A hierarchical model for estimating density in camera trap studies. Journal of Applied Ecology, 46(1), 118–127.CrossRef
go back to reference Royle, J. A., Sutherland, C., Fuller, A. K., & Sun, C. C. (2015). Likelihood analysis of spatial capture-recapture models for stratified or class structured populations. Ecosphere, 6(2), 1–11.CrossRef Royle, J. A., Sutherland, C., Fuller, A. K., & Sun, C. C. (2015). Likelihood analysis of spatial capture-recapture models for stratified or class structured populations. Ecosphere, 6(2), 1–11.CrossRef
go back to reference Royle, J. A., & Young, K. V. (2008). A hierarchical model for spatial capture-recapture data. Ecology, 89(8), 2281–2289.CrossRef Royle, J. A., & Young, K. V. (2008). A hierarchical model for spatial capture-recapture data. Ecology, 89(8), 2281–2289.CrossRef
go back to reference Russell, R. E., Royle, J. A., & et al. (2012). Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management, 76(8), 1551–1561. Russell, R. E., Royle, J. A., & et al. (2012). Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management, 76(8), 1551–1561.
go back to reference Schliep, E. M., Gelfand, A. E., Clark, J. S., & Kays, R. (2018.) Joint temporal point pattern models for proximate species occurrence in a fixed area using camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 23(3), 334–357.CrossRef Schliep, E. M., Gelfand, A. E., Clark, J. S., & Kays, R. (2018.) Joint temporal point pattern models for proximate species occurrence in a fixed area using camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 23(3), 334–357.CrossRef
go back to reference Seber, G. A. F., & Salehi, M. M. (2013). Adaptive sampling designs: Inference for sparse and clustered populations. Berlin: Springer, SpringerBriefs in Statistics.CrossRef Seber, G. A. F., & Salehi, M. M. (2013). Adaptive sampling designs: Inference for sparse and clustered populations. Berlin: Springer, SpringerBriefs in Statistics.CrossRef
go back to reference Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef
go back to reference Sirén, A. P. K., Pekins, P. J., Abdu, P. L., & Ducey, M. J. (2016). Identification and density estimation of American martens (Martes americana) using a novel camera-trap method. Diversity, 8(4), 3.CrossRef Sirén, A. P. K., Pekins, P. J., Abdu, P. L., & Ducey, M. J. (2016). Identification and density estimation of American martens (Martes americana) using a novel camera-trap method. Diversity, 8(4), 3.CrossRef
go back to reference Sollmann, R., Gardner, B., & Belant, J. L. (2012). How does spatial study design influence density estimates from spatial capture- recapture models? PLoS One, 7(4), e34575.CrossRef Sollmann, R., Gardner, B., & Belant, J. L. (2012). How does spatial study design influence density estimates from spatial capture- recapture models? PLoS One, 7(4), e34575.CrossRef
go back to reference Sollmann, R, Gardner, B., & et al. (2013a). Using multiple data sources provides density estimates for endangered Florida panther. Journal of Applied Ecology, 50(4), 961–968. Sollmann, R, Gardner, B., & et al. (2013a). Using multiple data sources provides density estimates for endangered Florida panther. Journal of Applied Ecology, 50(4), 961–968.
go back to reference Sollmann, R., Gardner, B., & et al. (2013b). A spatial mark-resight model augmented with telemetry data. Ecology, 94(3), 553–559. Sollmann, R., Gardner, B., & et al. (2013b). A spatial mark-resight model augmented with telemetry data. Ecology, 94(3), 553–559.
go back to reference Sollmann, R., Tôrres, N. M., & et al. (2013). Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar. Biological Conservation, 167, 242–247. Sollmann, R., Tôrres, N. M., & et al. (2013). Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar. Biological Conservation, 167, 242–247.
go back to reference Stevenson, B. C., Borchers, D. L., Altwegg, R., Swift, R. J., Gillespie, D. M., & Measey, G. J. (2015). A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods in Ecology and Evolution, 6(1), 38–48.CrossRef Stevenson, B. C., Borchers, D. L., Altwegg, R., Swift, R. J., Gillespie, D. M., & Measey, G. J. (2015). A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods in Ecology and Evolution, 6(1), 38–48.CrossRef
go back to reference Stevenson, B. C., van Dam-Bates, P., Young, C. K. Y., & Measey, J. (2021). A spatial capture–recapture model to estimate call rate and population density from passive acoustic surveys. Methods in Ecology and Evolution, 12(3), 432–442.CrossRef Stevenson, B. C., van Dam-Bates, P., Young, C. K. Y., & Measey, J. (2021). A spatial capture–recapture model to estimate call rate and population density from passive acoustic surveys. Methods in Ecology and Evolution, 12(3), 432–442.CrossRef
go back to reference Sun, C. C., Fuller, A. K., & Royle, J. A. (2014). Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One, 9(2), e88025.CrossRef Sun, C. C., Fuller, A. K., & Royle, J. A. (2014). Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One, 9(2), e88025.CrossRef
go back to reference Sutherland, C., Royle, J. A., & Linden, D. W. (2019). oSCR: A spatial capture–recapture R package for inference about spatial ecological processes. Ecography, 42(9), 1459–1469.CrossRef Sutherland, C., Royle, J. A., & Linden, D. W. (2019). oSCR: A spatial capture–recapture R package for inference about spatial ecological processes. Ecography, 42(9), 1459–1469.CrossRef
go back to reference Tobler, M. W., & Powell, G. V. N. (2013). Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biological Conservation, 159, 109–118.CrossRef Tobler, M. W., & Powell, G. V. N. (2013). Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biological Conservation, 159, 109–118.CrossRef
go back to reference Tobler, M. W., Zúñiga Hartley, A., Carrillo-Percastegui, S. E., Powell, G. V. N., & Lukacs, P. (2015). Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. Journal of Applied Ecology, 52(2), 413–421.CrossRef Tobler, M. W., Zúñiga Hartley, A., Carrillo-Percastegui, S. E., Powell, G. V. N., & Lukacs, P. (2015). Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. Journal of Applied Ecology, 52(2), 413–421.CrossRef
go back to reference Torres-Vila, L. M., Sanchez-González, Á, Ponce-Escudero, F., Martín-Vertedor, D., & Ferrero-Garciá, J. J. (2012). Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. European Journal of Forest Research, 131(4), 1103–1116.CrossRef Torres-Vila, L. M., Sanchez-González, Á, Ponce-Escudero, F., Martín-Vertedor, D., & Ferrero-Garciá, J. J. (2012). Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. European Journal of Forest Research, 131(4), 1103–1116.CrossRef
go back to reference Tourani, M. (2022). A review of spatial capture–recapture: Ecological insights, limitations, and prospects. Ecology and Evolution, 12(1), e8468.CrossRef Tourani, M. (2022). A review of spatial capture–recapture: Ecological insights, limitations, and prospects. Ecology and Evolution, 12(1), e8468.CrossRef
go back to reference Tourani, M., Dupont, P., Nawaz, M. A., & Bischof, R. (2020). Multiple observation processes in spatial capture-recapture models: How much do we gain? Ecology, 101(7), e03030.CrossRef Tourani, M., Dupont, P., Nawaz, M. A., & Bischof, R. (2020). Multiple observation processes in spatial capture-recapture models: How much do we gain? Ecology, 101(7), e03030.CrossRef
go back to reference Watts, D. E., Parker, I. D., Lopez, R. R., Silvy, N. J., & Davis, D. S. (2008). Distribution and abundance of endangered Florida Key Deer on outer islands. Journal of Wildlife Management, 72(2), 360–366.CrossRef Watts, D. E., Parker, I. D., Lopez, R. R., Silvy, N. J., & Davis, D. S. (2008). Distribution and abundance of endangered Florida Key Deer on outer islands. Journal of Wildlife Management, 72(2), 360–366.CrossRef
go back to reference Wegge, P., Pokheral, C. P., & Jnawali, S. R. (2004). Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation, 7(3), 251–256.CrossRef Wegge, P., Pokheral, C. P., & Jnawali, S. R. (2004). Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation, 7(3), 251–256.CrossRef
go back to reference Whittington, J., Hebblewhite, M., & Chandler, R. B. (2017). Generalized spatial mark–resight models with an application to grizzly bears. Journal of Applied Ecology, 55(1), 157–168.CrossRef Whittington, J., Hebblewhite, M., & Chandler, R. B. (2017). Generalized spatial mark–resight models with an application to grizzly bears. Journal of Applied Ecology, 55(1), 157–168.CrossRef
go back to reference Yoshizaki, J., Pollock, K. H., Brownie, C., & Webster, R. A. (2009). Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks. Ecology, 90(1), 3–9.CrossRef Yoshizaki, J., Pollock, K. H., Brownie, C., & Webster, R. A. (2009). Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks. Ecology, 90(1), 3–9.CrossRef
Metadata
Title
Spatial and Camera Methods
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-39834-6_14

Premium Partner