Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2011

01-06-2011

Spatial and temporal correlations of spike trains in frog retinal ganglion cells

Authors: Wen-Zhong Liu, Wei Jing, Hao Li, Hai-Qing Gong, Pei-Ji Liang

Published in: Journal of Computational Neuroscience | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For a neuron, firing activity can be in synchrony with that of others, which results in spatial correlation; on the other hand, spike events within each individual spike train may also correlate with each other, which results in temporal correlation. In order to investigate the relationship between these two phenomena, population neurons’ activities of frog retinal ganglion cells in response to binary pseudo-random checker-board flickering were recorded via a multi-electrode recording system. The spatial correlation index (SCI) and temporal correlation index (TCI) were calculated for the investigated neurons. Statistical results showed that, for a single neuron, the SCI and TCI values were highly related—a neuron with a high SCI value generally had a high TCI value, and these two indices were both associated with burst activities in spike train of the investigated neuron. These results may suggest that spatial and temporal correlations of single neuron’s spiking activities could be mutually modulated; and that burst activities could play a role in the modulation. We also applied models to test the contribution of spatial and temporal correlations for visual information processing. We show that a model considering spatial and temporal correlations could predict spikes more accurately than a model does not include any correlation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhattacharya, J., Edwards, J., Mamelak, A. N., & Schuman, E. M. (2005). Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans. Neuroscience, 131(2), 547–555.PubMedCrossRef Bhattacharya, J., Edwards, J., Mamelak, A. N., & Schuman, E. M. (2005). Long-range temporal correlations in the spontaneous spiking of neurons in the hippocampal-amygdala complex of humans. Neuroscience, 131(2), 547–555.PubMedCrossRef
go back to reference Bloomfield, S. A., & Völgyi, B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews. Neuroscience, 10(7), 495–506.PubMedCrossRef Bloomfield, S. A., & Völgyi, B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews. Neuroscience, 10(7), 495–506.PubMedCrossRef
go back to reference Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–540.PubMedCrossRef Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–540.PubMedCrossRef
go back to reference Buonomano, D. V., & Maass, W. (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience, 10(2), 113–125.PubMedCrossRef Buonomano, D. V., & Maass, W. (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience, 10(2), 113–125.PubMedCrossRef
go back to reference Cai, C. F., Zhang, Y. Y., Liu, X., Liang, P. J., & Zhang, P. M. (2008). Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chinese Physics Letters, 25(5), 1595–1598.CrossRef Cai, C. F., Zhang, Y. Y., Liu, X., Liang, P. J., & Zhang, P. M. (2008). Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chinese Physics Letters, 25(5), 1595–1598.CrossRef
go back to reference DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.PubMed DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.PubMed
go back to reference Devries, S. H., & Baylor, D. A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. Journal of Neurophysiology, 78(4), 2048–2060.PubMed Devries, S. H., & Baylor, D. A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. Journal of Neurophysiology, 78(4), 2048–2060.PubMed
go back to reference Field, G. D., & Chichilnisky, E. J. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience, 30, 1–30.PubMedCrossRef Field, G. D., & Chichilnisky, E. J. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience, 30, 1–30.PubMedCrossRef
go back to reference Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71–77.PubMedCrossRef Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71–77.PubMedCrossRef
go back to reference Ishikane, H., Gangi, M., Honda, S., & Tachibana, M. (2005). Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nature Neuroscience, 8(8), 1087–1095.PubMedCrossRef Ishikane, H., Gangi, M., Honda, S., & Tachibana, M. (2005). Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nature Neuroscience, 8(8), 1087–1095.PubMedCrossRef
go back to reference Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010a). Influence of GABAergic inhibition on concerted activity between the ganglion cells. NeuroReport, 21(12), 797–801.PubMedCrossRef Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010a). Influence of GABAergic inhibition on concerted activity between the ganglion cells. NeuroReport, 21(12), 797–801.PubMedCrossRef
go back to reference Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010b). Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cognitive Neurodynamics, 4, 179–188.CrossRef Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010b). Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cognitive Neurodynamics, 4, 179–188.CrossRef
go back to reference Koch, K., McLean, J., Berry, M., Sterling, P., Balasubramanian, V., & Freed, M. A. (2004). Efficiency of information transmission by retinal ganglion cells. Current Biology, 14(17), 1523–1530.PubMedCrossRef Koch, K., McLean, J., Berry, M., Sterling, P., Balasubramanian, V., & Freed, M. A. (2004). Efficiency of information transmission by retinal ganglion cells. Current Biology, 14(17), 1523–1530.PubMedCrossRef
go back to reference Koch, K., McLean, J., Segev, R., Freed, M. A., Berry, M. J., Balasubramanian, V., et al. (2006). How much the eye tells the brain. Current Biology, 16(14), 1428–1434.PubMedCrossRef Koch, K., McLean, J., Segev, R., Freed, M. A., Berry, M. J., Balasubramanian, V., et al. (2006). How much the eye tells the brain. Current Biology, 16(14), 1428–1434.PubMedCrossRef
go back to reference Lesica, N., & Stanley, G. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of Neuroscience, 24(47), 10731.PubMedCrossRef Lesica, N., & Stanley, G. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of Neuroscience, 24(47), 10731.PubMedCrossRef
go back to reference Lettvin, J., Maturana, H., McCulloch, W., & Pitts, W. (1959). What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11), 1940–1951.CrossRef Lettvin, J., Maturana, H., McCulloch, W., & Pitts, W. (1959). What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11), 1940–1951.CrossRef
go back to reference Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43.PubMedCrossRef Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43.PubMedCrossRef
go back to reference Liu, X., Zhou, Y., Gong, H. Q., & Liang, P. J. (2007). Contribution of the GABAergic pathway (s) to the correlated activities of chicken retinal ganglion cells. Brain Research, 1177, 37–46.PubMedCrossRef Liu, X., Zhou, Y., Gong, H. Q., & Liang, P. J. (2007). Contribution of the GABAergic pathway (s) to the correlated activities of chicken retinal ganglion cells. Brain Research, 1177, 37–46.PubMedCrossRef
go back to reference Lowen, S. B., & Teich, M. C. (1992). Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. Journal of the Acoustical Society of America, 92(2I), 803–806.PubMedCrossRef Lowen, S. B., & Teich, M. C. (1992). Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. Journal of the Acoustical Society of America, 92(2I), 803–806.PubMedCrossRef
go back to reference Meister, M., Pine, J., & Baylor, D. A. (1994). Multi-neuronal signals from the retina: acquisition and analysis. Journal of Neuroscience Methods, 51(1), 95–106.PubMedCrossRef Meister, M., Pine, J., & Baylor, D. A. (1994). Multi-neuronal signals from the retina: acquisition and analysis. Journal of Neuroscience Methods, 51(1), 95–106.PubMedCrossRef
go back to reference Meister, M., Lagnado, L., & Baylor, D. A. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.PubMedCrossRef Meister, M., Lagnado, L., & Baylor, D. A. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.PubMedCrossRef
go back to reference Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–733.PubMedCrossRef Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–733.PubMedCrossRef
go back to reference Oram, M., Wiener, M., Lestienne, R., & Richmond, B. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophysiology, 81(6), 3021–3033.PubMed Oram, M., Wiener, M., Lestienne, R., & Richmond, B. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophysiology, 81(6), 3021–3033.PubMed
go back to reference Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef
go back to reference Reid, R., Victor, J., & Shapley, R. (1997). The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Visual Neuroscience, 14(06), 1015–1027.PubMedCrossRef Reid, R., Victor, J., & Shapley, R. (1997). The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Visual Neuroscience, 14(06), 1015–1027.PubMedCrossRef
go back to reference Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience, 20(14), 5392.PubMed Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience, 20(14), 5392.PubMed
go back to reference Schneidman, E., Berry, M. J., II, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007.PubMedCrossRef Schneidman, E., Berry, M. J., II, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007.PubMedCrossRef
go back to reference Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37(3), 499–511.PubMedCrossRef Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37(3), 499–511.PubMedCrossRef
go back to reference Segev, R., Goodhouse, J., Puchalla, J., & Berry Ii, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1154–1161.PubMedCrossRef Segev, R., Goodhouse, J., Puchalla, J., & Berry Ii, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1154–1161.PubMedCrossRef
go back to reference Shlens, J., Rieke, F., & Chichilnisky, E. J. (2008). Synchronized firing in the retina. Current Opinion in Neurobiology, 18(4), 396–402.PubMedCrossRef Shlens, J., Rieke, F., & Chichilnisky, E. J. (2008). Synchronized firing in the retina. Current Opinion in Neurobiology, 18(4), 396–402.PubMedCrossRef
go back to reference Snider, R., Kabara, J., Roig, B., & Bonds, A. (1998). Burst firing and modulation of functional connectivity in cat striate cortex. Journal of Neurophysiology, 80(2), 730–744.PubMed Snider, R., Kabara, J., Roig, B., & Bonds, A. (1998). Burst firing and modulation of functional connectivity in cat striate cortex. Journal of Neurophysiology, 80(2), 730–744.PubMed
go back to reference Strong, S., Koberle, R., van Steveninck, R., & Bialek, W. (1998). Entropy and information in neural spike trains. Am Phys Soc, 80, 197–200. Strong, S., Koberle, R., van Steveninck, R., & Bialek, W. (1998). Entropy and information in neural spike trains. Am Phys Soc, 80, 197–200.
go back to reference Teich, M. C., Turcott, R. G., & Siegel, R. M. (1996). Temporal correlation in cat striate-cortex neural spike trains. IEEE Engineering in Medicine and Biology Magazine, 15(5), 79–87.CrossRef Teich, M. C., Turcott, R. G., & Siegel, R. M. (1996). Temporal correlation in cat striate-cortex neural spike trains. IEEE Engineering in Medicine and Biology Magazine, 15(5), 79–87.CrossRef
go back to reference Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., & Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A, 14(3), 529–546.CrossRef Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T., & Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A, 14(3), 529–546.CrossRef
go back to reference Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.PubMedCrossRef Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.PubMedCrossRef
go back to reference Zhang, P. M., Wu, J. Y., Zhou, Y., Liang, P. J., & Yuan, J. (2004). Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. Journal of Neuroscience Methods, 135(1–2), 55–65.PubMedCrossRef Zhang, P. M., Wu, J. Y., Zhou, Y., Liang, P. J., & Yuan, J. (2004). Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. Journal of Neuroscience Methods, 135(1–2), 55–65.PubMedCrossRef
Metadata
Title
Spatial and temporal correlations of spike trains in frog retinal ganglion cells
Authors
Wen-Zhong Liu
Wei Jing
Hao Li
Hai-Qing Gong
Pei-Ji Liang
Publication date
01-06-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0277-9

Other articles of this Issue 3/2011

Journal of Computational Neuroscience 3/2011 Go to the issue

Premium Partner