Skip to main content
Top
Published in: Journal of Materials Science 31/2021

22-08-2021 | Materials for life sciences

Spatial and uniform deposition of cell-laden constructs on 3D printed composite phosphorylated hydrogels for improved osteoblast responses

Authors: Bipin Gaihre, Xifeng Liu, Maryam Tilton, Linli Li, Yong Li, Lichun Lu

Published in: Journal of Materials Science | Issue 31/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phosphorylated-oligo [poly(ethylene glycol)fumarate] (Pi-OPF) was combined with functionalized clays to facilitate the extrusion 3D printing of Pi-OPF. Acrylated montmorillonite (Ac-MMT) was synthesized for the covalent crosslinking of MMT with the Pi-OPF. The incorporation of Ac-MMT was observed to improve the rheological properties of Pi-OPF, enabling a high-fidelity extrusion printing. A well-dispersed exfoliated MMT phase was observed within the polymer matrix after the crosslinking. This leveraged improved mechanical properties of the Pi-OPF hydrogels evident through the compressive analysis. Additionally, a unique bioink combining chitosan methacrylate (ChiMA) and gelatin was developed with a primary goal of depositing the cells on the 3D printed Pi-OPF scaffolds for uniform cell distribution and for facilitating a spatial interaction between cells and Ac-MMT particles. This bioink was shown to support the encapsulation and proliferation of the printed pre-osteoblasts by the live/dead cell assay results. This excellent cell responses were unaltered when the cell laden was deposited on 3D printed Pi-OPF scaffolds. Furthermore, the spatial interaction between cells and Ac-MMT elicited improved osteoblast responses indicated by the spreading of encapsulated cells and higher intracellular alkaline phosphatase (ALP) expression. Taken together, the results of this study present the combinatorial application of 3D printing and bioprinting to achieve desirable biological responses through the interaction between cells and biomaterials.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Prendergast ME, Burdick JA (2020) Recent advances in enabling technologies in 3d printing for precision medicine. Adv Mater 32(13):1902516CrossRef Prendergast ME, Burdick JA (2020) Recent advances in enabling technologies in 3d printing for precision medicine. Adv Mater 32(13):1902516CrossRef
2.
go back to reference Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRef Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRef
3.
go back to reference Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 226:119536CrossRef Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 226:119536CrossRef
4.
go back to reference Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef
5.
go back to reference Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A (2019) Advancing frontiers in bone bioprinting. Adv Healthcare Mater 8(7):1801048CrossRef Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A (2019) Advancing frontiers in bone bioprinting. Adv Healthcare Mater 8(7):1801048CrossRef
6.
go back to reference Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK (2020) Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Appl Mater Interfaces 12(14):15976–15988CrossRef Chimene D, Miller L, Cross LM, Jaiswal MK, Singh I, Gaharwar AK (2020) Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Appl Mater Interfaces 12(14):15976–15988CrossRef
7.
go back to reference Chimene D, Peak CW, Gentry JL, Carrow JK, Cross LM, Mondragon E, Cardoso GB, Kaunas R, Gaharwar AK (2018) Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting. ACS Appl Mater Interfaces 10(12):9957–9968CrossRef Chimene D, Peak CW, Gentry JL, Carrow JK, Cross LM, Mondragon E, Cardoso GB, Kaunas R, Gaharwar AK (2018) Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting. ACS Appl Mater Interfaces 10(12):9957–9968CrossRef
8.
go back to reference Zhai X, Ruan C, Ma Y, Cheng D, Wu M, Liu W, Zhao X, Pan H, Lu WW (2018) 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci 5(3):1700550CrossRef Zhai X, Ruan C, Ma Y, Cheng D, Wu M, Liu W, Zhao X, Pan H, Lu WW (2018) 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci 5(3):1700550CrossRef
9.
go back to reference Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA (2019) 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater 31(23):1900332CrossRef Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA (2019) 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater 31(23):1900332CrossRef
10.
go back to reference Mousa M, Evans ND, Oreffo ROC, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214CrossRef Mousa M, Evans ND, Oreffo ROC, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214CrossRef
11.
go back to reference Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRef Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRef
12.
go back to reference Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118CrossRef Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118CrossRef
13.
go back to reference Page DJ, Clarkin CE, Mani R, Khan NA, Dawson JI, Evans ND (2019) Injectable nanoclay gels for angiogenesis. Acta Biomater 100:378–387CrossRef Page DJ, Clarkin CE, Mani R, Khan NA, Dawson JI, Evans ND (2019) Injectable nanoclay gels for angiogenesis. Acta Biomater 100:378–387CrossRef
14.
go back to reference Cui Z-K, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M (2019) Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 10(1):3523CrossRef Cui Z-K, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M (2019) Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 10(1):3523CrossRef
15.
go back to reference Mieszawska AJ, Llamas JG, Vaiana CA, Kadakia MP, Naik RR, Kaplan DL (2011) Clay enriched silk biomaterials for bone formation. Acta Biomater 7(8):3036–3041CrossRef Mieszawska AJ, Llamas JG, Vaiana CA, Kadakia MP, Naik RR, Kaplan DL (2011) Clay enriched silk biomaterials for bone formation. Acta Biomater 7(8):3036–3041CrossRef
16.
go back to reference Brigatti MF, Galan E, Theng BKG (2006) Chapter 2 Structures and Mineralogy of Clay Minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in Clay Science, Elsevier, pp 19–86 Brigatti MF, Galan E, Theng BKG (2006) Chapter 2 Structures and Mineralogy of Clay Minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in Clay Science, Elsevier, pp 19–86
17.
go back to reference Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Delivery Sci Technol 39:200–209CrossRef Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Delivery Sci Technol 39:200–209CrossRef
18.
go back to reference Wiles MC, Huebner HJ, Afriyie-Gyawu E, Taylor RJ, Bratton GR, Phillips TD (2004) TOXICOLOGICAL EVALUATION AND METAL BIOAVAILABILITY IN PREGNANT RATS FOLLOWING EXPOSURE TO CLAY MINERALS IN THE DIET. J Toxicol Environ Health A 67(11):863–874CrossRef Wiles MC, Huebner HJ, Afriyie-Gyawu E, Taylor RJ, Bratton GR, Phillips TD (2004) TOXICOLOGICAL EVALUATION AND METAL BIOAVAILABILITY IN PREGNANT RATS FOLLOWING EXPOSURE TO CLAY MINERALS IN THE DIET. J Toxicol Environ Health A 67(11):863–874CrossRef
19.
go back to reference Afriyie-Gyawu E, Mackie J, Dash B, Wiles M, Taylor J, Huebner H, Tang L, Guan H, Wang J-S, Phillips T (2005) Chronic toxicological evaluation of dietary novasil clay in sprague-dawley rats. Food Addit Contam 22(3):259–269CrossRef Afriyie-Gyawu E, Mackie J, Dash B, Wiles M, Taylor J, Huebner H, Tang L, Guan H, Wang J-S, Phillips T (2005) Chronic toxicological evaluation of dietary novasil clay in sprague-dawley rats. Food Addit Contam 22(3):259–269CrossRef
20.
go back to reference Lin F-H, Chen C-H, Cheng WTK, Kuo T-F (2006) Modified montmorillonite as vector for gene delivery. Biomaterials 27(17):3333–3338CrossRef Lin F-H, Chen C-H, Cheng WTK, Kuo T-F (2006) Modified montmorillonite as vector for gene delivery. Biomaterials 27(17):3333–3338CrossRef
23.
go back to reference Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792CrossRef Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792CrossRef
24.
go back to reference Brown TD, Whitehead KA, Mitragotri S (2020) Materials for oral delivery of proteins and peptides. Nat Rev Mater 5(2):127–148CrossRef Brown TD, Whitehead KA, Mitragotri S (2020) Materials for oral delivery of proteins and peptides. Nat Rev Mater 5(2):127–148CrossRef
25.
go back to reference Gaihre B, Uswatta S, Jayasuriya AC (2018) Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids Surf, B 165:158–164CrossRef Gaihre B, Uswatta S, Jayasuriya AC (2018) Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids Surf, B 165:158–164CrossRef
26.
go back to reference Gaihre B, Unagolla JM, Liu J, Ebraheim NA, Jayasuriya AC (2019) Thermoresponsive injectable microparticle-gel composites with recombinant BMP-9 and VEGF enhance bone formation in rats. ACS Biomater Sci Eng 5(9):4587–4600CrossRef Gaihre B, Unagolla JM, Liu J, Ebraheim NA, Jayasuriya AC (2019) Thermoresponsive injectable microparticle-gel composites with recombinant BMP-9 and VEGF enhance bone formation in rats. ACS Biomater Sci Eng 5(9):4587–4600CrossRef
27.
go back to reference Botelho da Silva S, Krolicka M, van den Broek LAM, Frissen AE, Boeriu CG (2018) Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohyd Polym 186:299–309CrossRef Botelho da Silva S, Krolicka M, van den Broek LAM, Frissen AE, Boeriu CG (2018) Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohyd Polym 186:299–309CrossRef
29.
go back to reference Demirtaş TT, Irmak G, Gümüşderelioğlu M (2017) A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 9(3):035003CrossRef Demirtaş TT, Irmak G, Gümüşderelioğlu M (2017) A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 9(3):035003CrossRef
30.
go back to reference Romanzini D, Piroli V, Frache A, Zattera AJ, Amico SC (2015) Sodium montmorillonite modified with methacryloxy and vinylsilanes: influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Appl Clay Sci 114:550–557CrossRef Romanzini D, Piroli V, Frache A, Zattera AJ, Amico SC (2015) Sodium montmorillonite modified with methacryloxy and vinylsilanes: influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Appl Clay Sci 114:550–557CrossRef
32.
go back to reference Dannert C, Stokke BT, Dias RS (2019) Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers (Basel). 11(2):275CrossRef Dannert C, Stokke BT, Dias RS (2019) Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers (Basel). 11(2):275CrossRef
33.
go back to reference Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L (2017) Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Interfaces 9(17):14677–14690CrossRef Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L (2017) Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Interfaces 9(17):14677–14690CrossRef
34.
go back to reference Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A (2018) Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 12(10):9866–9880CrossRef Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A (2018) Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 12(10):9866–9880CrossRef
35.
36.
go back to reference Ahlfeld T, Guduric v, Duin S, Akkineni AR, Schütz K, Kilian D, Emmermacher J, Cubo-Mateo N, Dani S, Witzleben MV, Spangenberg J, Abdelgaber R, Richter RF, Lode A, Gelinsky M (2020) Methylcellulose – a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity. Biomater Sci 8(8):2102–2110. https://doi.org/10.1039/D0BM00027BCrossRef Ahlfeld T, Guduric v, Duin S, Akkineni AR, Schütz K, Kilian D, Emmermacher J, Cubo-Mateo N, Dani S, Witzleben MV, Spangenberg J, Abdelgaber R, Richter RF, Lode A, Gelinsky M (2020) Methylcellulose – a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity. Biomater Sci 8(8):2102–2110. https://​doi.​org/​10.​1039/​D0BM00027BCrossRef
37.
go back to reference Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. 8(3):035003CrossRef Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. 8(3):035003CrossRef
38.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRef Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRef
39.
go back to reference Levin M, Sonn-Segev A, Roichman Y (2019) Structural changes in nanoparticle-hydrogel composites at very low filler concentrations. J Chem Phys 150(6):064908CrossRef Levin M, Sonn-Segev A, Roichman Y (2019) Structural changes in nanoparticle-hydrogel composites at very low filler concentrations. J Chem Phys 150(6):064908CrossRef
40.
go back to reference Wang Z, Zhao J, Tang W, Hu L, Chen X, Su Y, Zou C, Wang J, Lu WW, Zhen W, Zhang R, Yang D, Peng S (2019) Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation. Small 15(41):1901560CrossRef Wang Z, Zhao J, Tang W, Hu L, Chen X, Su Y, Zou C, Wang J, Lu WW, Zhen W, Zhang R, Yang D, Peng S (2019) Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation. Small 15(41):1901560CrossRef
41.
go back to reference Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomaterials Science 6(5):915–946CrossRef Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomaterials Science 6(5):915–946CrossRef
42.
go back to reference Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mat Today Bio 1:100008CrossRef Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mat Today Bio 1:100008CrossRef
Metadata
Title
Spatial and uniform deposition of cell-laden constructs on 3D printed composite phosphorylated hydrogels for improved osteoblast responses
Authors
Bipin Gaihre
Xifeng Liu
Maryam Tilton
Linli Li
Yong Li
Lichun Lu
Publication date
22-08-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 31/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06439-3

Other articles of this Issue 31/2021

Journal of Materials Science 31/2021 Go to the issue

Premium Partners