Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 2/2020

27-08-2020 | Original Paper

Spatial partitioning for proactive spectrum fragmentation avoidance in flex-grid/SDM dynamic optical core networks

Authors: Jaume Comellas, Jordi Perelló, Josep Solé-Pareta, Gabriel Junyent

Published in: Photonic Network Communications | Issue 2/2020

Login to get access
share
SHARE

Abstract

Spectrum fragmentation has always been a major issue to overcome toward spectrally efficient Flex-Grid over Single-Mode Fiber dynamic optical networks and continues like so when evolving to Flex-Grid over Spatial Division Multiplexing (SDM). A possible strategy to eliminate its pernicious effects is to divide the available spectrum into several partitions, dedicating each one of them to only support connections with identical spectral requirements. In this way, a first-fit spectrum assignment ensures that spectral gaps at each spectral partition will always match the bandwidth needs of future connection requests. In this paper, we extend this strategy to be applicable to Flex-Grid/SDM dynamic optical networks. Furthermore, leveraging the spatial multiplicity offered by SDM, we also investigate spatial partitioning as an effective yet simpler and more easily manageable solution to also eliminate the spectrum fragmentation negative effects. Both strategies are numerically evaluated in two reference Flex-Grid/SDM backbone networks with × 7 spatial multiplicity, yielding noteworthy carried network load gains up to 18% versus a non-partitioned network scenario. When increasing the spatial multiplicities up to × 30, such gains tend to stabilize around 3–4%. Some results are also obtained under unexpected traffic profile deviations, showing that, even under moderate deviations, partitioning becomes beneficial. Comparing spectral and spatial partitioning, they tend to perform quite similar in all cases. This makes us advocate for spatial partitioning as a more interesting solution for spectrum fragmentation avoidance in this kind of networks.
Literature
1.
go back to reference Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009) CrossRef Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009) CrossRef
2.
go back to reference Gerstel, O., Jinno, M., Lord, A., Ben Yoo, S.J.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), 12–20 (2012) CrossRef Gerstel, O., Jinno, M., Lord, A., Ben Yoo, S.J.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), 12–20 (2012) CrossRef
3.
go back to reference Ruiz, M., Velasco, L., Lord, A., Fonseca, D., Pioro, M., Wessaly, R., Fernandez-Palacios, J.P.: Planning fixed to flexgrid gradual migration: drivers and open issues. IEEE Commun. Mag. 52(1), 70–76 (2014) CrossRef Ruiz, M., Velasco, L., Lord, A., Fonseca, D., Pioro, M., Wessaly, R., Fernandez-Palacios, J.P.: Planning fixed to flexgrid gradual migration: drivers and open issues. IEEE Commun. Mag. 52(1), 70–76 (2014) CrossRef
4.
go back to reference International Telecommunication Union - ITU-T, “G.694.1 (02/2012), Spectral grids for WDM applications: DWDM frequency grid,” Ser. G.694.1, pp. 1–16 (2012) International Telecommunication Union - ITU-T, “G.694.1 (02/2012), Spectral grids for WDM applications: DWDM frequency grid,” Ser. G.694.1, pp. 1–16 (2012)
5.
go back to reference Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. IEEE/OSA J. Lightw. Technol. 28(4), 662–701 (2010) CrossRef Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. IEEE/OSA J. Lightw. Technol. 28(4), 662–701 (2010) CrossRef
6.
go back to reference Winzer, P.J.: Spatial multiplexing in fiber optics: the 10 × scaling of metro/core capacities. Bell Labs Tech. J. 19, 22–30 (2014) CrossRef Winzer, P.J.: Spatial multiplexing in fiber optics: the 10 × scaling of metro/core capacities. Bell Labs Tech. J. 19, 22–30 (2014) CrossRef
7.
go back to reference Richardson, D.J., Fini, J.M., Nelson, L.E.: Space division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013) CrossRef Richardson, D.J., Fini, J.M., Nelson, L.E.: Space division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013) CrossRef
8.
go back to reference Klonidis, D., Cugini, F., Gerstel, O., Jinno, M., Lopez, V., Palkopoulou, E., Sekiya, M., Siracusa, D., Thouénon, G., Betoule, C.: Spectrally and spatially flexible optical network planning and operations. IEEE Commun. Mag. 53(2), 69–78 (2015) CrossRef Klonidis, D., Cugini, F., Gerstel, O., Jinno, M., Lopez, V., Palkopoulou, E., Sekiya, M., Siracusa, D., Thouénon, G., Betoule, C.: Spectrally and spatially flexible optical network planning and operations. IEEE Commun. Mag. 53(2), 69–78 (2015) CrossRef
9.
go back to reference Nelson, L.E., Feuer, M.D., Abedin, K., Zhou, X., Taunay, T.F., Fini, J.M., Zhu, B., Isaac, R., Harel, R., Cohen, G., Marom, D.M.: Spatial superchannel routing in a two-span ROADM system for space division multiplexing. J. Light. Technol. 32(4), 783–789 (2014) CrossRef Nelson, L.E., Feuer, M.D., Abedin, K., Zhou, X., Taunay, T.F., Fini, J.M., Zhu, B., Isaac, R., Harel, R., Cohen, G., Marom, D.M.: Spatial superchannel routing in a two-span ROADM system for space division multiplexing. J. Light. Technol. 32(4), 783–789 (2014) CrossRef
10.
go back to reference Shariati, B., Rivas-Moscoso, J.M., Marom, D.M., Ben-Ezra, S., Klonidis, D., Velasco, L., Tomkos, I.: Impact of spatial and spectral granularity on the performance of SDM networks based on spatial superchannel switching. J. Light. Technol. 35(13), 2559–2568 (2017) CrossRef Shariati, B., Rivas-Moscoso, J.M., Marom, D.M., Ben-Ezra, S., Klonidis, D., Velasco, L., Tomkos, I.: Impact of spatial and spectral granularity on the performance of SDM networks based on spatial superchannel switching. J. Light. Technol. 35(13), 2559–2568 (2017) CrossRef
11.
go back to reference Marom, D.M., Colbourne, P.D., D’Errico, A., Fontaine, N.K., Ikuma, Y., Proietti, R., Zong, L., Rivas-Moscoso, J.M., Tomkos, I.: Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. J. Opt. Commun. Netw. 9(1), 1–26 (2017) CrossRef Marom, D.M., Colbourne, P.D., D’Errico, A., Fontaine, N.K., Ikuma, Y., Proietti, R., Zong, L., Rivas-Moscoso, J.M., Tomkos, I.: Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. J. Opt. Commun. Netw. 9(1), 1–26 (2017) CrossRef
12.
go back to reference Rumipamba-Zambrano, R., Moreno-Muro, F.-J., Perelló, J., Pavón-Mariño, P., Spadaro, S.: Space continuity constraint in dynamic flex-grid/SDM optical core networks: an evaluation with spatial and spectral super-channels. Comput. Commun. 126, 38–49 (2018) CrossRef Rumipamba-Zambrano, R., Moreno-Muro, F.-J., Perelló, J., Pavón-Mariño, P., Spadaro, S.: Space continuity constraint in dynamic flex-grid/SDM optical core networks: an evaluation with spatial and spectral super-channels. Comput. Commun. 126, 38–49 (2018) CrossRef
13.
go back to reference Catterjee, B.C., Sarma, N., Oki, E.: Routing and spectrum allocation in elastic optical networks: a tutorial. IEEE Commun. Surv. Tutor. 17(3), 1776–1800 (2015) CrossRef Catterjee, B.C., Sarma, N., Oki, E.: Routing and spectrum allocation in elastic optical networks: a tutorial. IEEE Commun. Surv. Tutor. 17(3), 1776–1800 (2015) CrossRef
14.
go back to reference Yuan, J., Zhu, R., Zhao, Y., Zhang, Q., Li, X., Zhang, D., Samuel, A.: A spectrum assignment algorithm in elastic optical network with minimum sum of weighted resource reductions in all associated paths. J. Light. Technol. 37(21), 5583–5592 (2019) CrossRef Yuan, J., Zhu, R., Zhao, Y., Zhang, Q., Li, X., Zhang, D., Samuel, A.: A spectrum assignment algorithm in elastic optical network with minimum sum of weighted resource reductions in all associated paths. J. Light. Technol. 37(21), 5583–5592 (2019) CrossRef
15.
go back to reference Yuan, J., Xu, Z., Zhu, R., Zhang, Q., Li, X., Zhang, J.: A pre-split multi-flow RMSA algorithm in elastic optical networks. Opt. Fiber Technol. 52, 101993 (2019) CrossRef Yuan, J., Xu, Z., Zhu, R., Zhang, Q., Li, X., Zhang, J.: A pre-split multi-flow RMSA algorithm in elastic optical networks. Opt. Fiber Technol. 52, 101993 (2019) CrossRef
16.
go back to reference Zhao, Y., Hu, L., Zhu, R., Yu, X., Li, Y., Wang, W., Zhang, J.: Crosstalk-aware spectrum defragmentation by re-provisioning advance reservation requests in space division multiplexing enabled elastic optical networks with multi-core fiber. Opt. Express 27(4), 5014–5032 (2019) CrossRef Zhao, Y., Hu, L., Zhu, R., Yu, X., Li, Y., Wang, W., Zhang, J.: Crosstalk-aware spectrum defragmentation by re-provisioning advance reservation requests in space division multiplexing enabled elastic optical networks with multi-core fiber. Opt. Express 27(4), 5014–5032 (2019) CrossRef
17.
go back to reference Yang, H., Yao, Q., Yu, A., Lee, Y., Zhang, J.: Resource assignment based on dynamic fuzzy clustering in elastic optical networks with multi-core fibers. IEEE Trans. Commun. 67(5), 3457–3469 (2019) CrossRef Yang, H., Yao, Q., Yu, A., Lee, Y., Zhang, J.: Resource assignment based on dynamic fuzzy clustering in elastic optical networks with multi-core fibers. IEEE Trans. Commun. 67(5), 3457–3469 (2019) CrossRef
18.
go back to reference Qiu, Y.: Group-based spectrum assignment in dynamic flex-grid optical networks. Opt. Fiber Technol. 19(5), 437–445 (2013) CrossRef Qiu, Y.: Group-based spectrum assignment in dynamic flex-grid optical networks. Opt. Fiber Technol. 19(5), 437–445 (2013) CrossRef
19.
go back to reference Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth optical networks. Opt. Switch. Netw. 11, 83–91 (2014) CrossRef Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth optical networks. Opt. Switch. Netw. 11, 83–91 (2014) CrossRef
20.
go back to reference Shariati, B., Mastropaolo, A., Diamantopoulos, N.-P., Rivas-Moscoso, J.M., Klonidis, D., Tomkos, I.: Physical-layer-aware performance evaluation of SDM networks based on SMF bundles, MCFs, and FMFs. J. Opt. Commun. Netw. 10(9), 712–722 (2018) CrossRef Shariati, B., Mastropaolo, A., Diamantopoulos, N.-P., Rivas-Moscoso, J.M., Klonidis, D., Tomkos, I.: Physical-layer-aware performance evaluation of SDM networks based on SMF bundles, MCFs, and FMFs. J. Opt. Commun. Netw. 10(9), 712–722 (2018) CrossRef
Metadata
Title
Spatial partitioning for proactive spectrum fragmentation avoidance in flex-grid/SDM dynamic optical core networks
Authors
Jaume Comellas
Jordi Perelló
Josep Solé-Pareta
Gabriel Junyent
Publication date
27-08-2020
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2/2020
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00903-x