Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Spatial Specification of Grid Structures by Petri Nets

Authors : Dmitry A. Zaitsev, Tatiana R. Shmeleva, Werner Retschitzegger

Published in: Micro-Electronics and Telecommunication Engineering

Publisher: Springer Singapore

share
SHARE

Abstract

To deal with models in grid computing (and systems biology as well), two basic ways of specifying spatial structures with Petri nets are considered—a colored Petri net and a parametric expression. We present a composition of hypertorus grid models in a form of parametric expression and colored Petri net, their mutual transformations, and unfolding into a place/transition net; the parameters are the number of dimensions and the size. The rules of mutual transformations of Petri net spatial specifications are studied. Colored Petri nets are convenient for the state space analysis. The main advantage of parametric expressions is the ability to obtain linear invariants and other structural constructs of Petri nets, for instance, siphons and traps, in parametric form that allows us to draw conclusions on Petri net properties for any values of parameters. Thus, we say that infinite grids (Petri nets) with definite spatial structure are investigated.
Literature
1.
go back to reference Kurose JF, Ross KW (2009) In: Computer networking: a top-down approach, 5th edn, Addison-Wesley Kurose JF, Ross KW (2009) In: Computer networking: a top-down approach, 5th edn, Addison-Wesley
2.
go back to reference Preve NP (Ed) (2011) In: Grid computing: towards a global interconnected infrastructure, Springer Preve NP (Ed) (2011) In: Grid computing: towards a global interconnected infrastructure, Springer
3.
go back to reference IGI-Global (2012) In: Grid and cloud computing: concepts, methodologies, tools and applications, vol 4, Information Resources Management Association (USA), IGI-Global IGI-Global (2012) In: Grid and cloud computing: concepts, methodologies, tools and applications, vol 4, Information Resources Management Association (USA), IGI-Global
4.
go back to reference Ryan (2020) Whitwam Japan’s new ARM-based supercomputer is the fastest in the World, ExtremeTech, June 23 Ryan (2020) Whitwam Japan’s new ARM-based supercomputer is the fastest in the World, ExtremeTech, June 23
5.
go back to reference Zaitsev DA, Shmeleva TR (2010) Verification of hypercube communication structures via parametric Petri nets. Cybern Syst Anal 46(1):105–114 MathSciNetCrossRef Zaitsev DA, Shmeleva TR (2010) Verification of hypercube communication structures via parametric Petri nets. Cybern Syst Anal 46(1):105–114 MathSciNetCrossRef
6.
go back to reference Zaitsev DA (2013) Verification of computing grids with special edge conditions by infinite petri nets. Autom Control Comput Sci 47(7):403–412 CrossRef Zaitsev DA (2013) Verification of computing grids with special edge conditions by infinite petri nets. Autom Control Comput Sci 47(7):403–412 CrossRef
7.
go back to reference Gao Q, Liu F, Tree D, Gilbert D (2011) Multi-cell modelling using coloured petri nets applied to planar cell polarity. In: Proceedings of the 2nd international workshop on biological processes and petri nets (BioPPN2011), pp 135–150 Gao Q, Liu F, Tree D, Gilbert D (2011) Multi-cell modelling using coloured petri nets applied to planar cell polarity. In: Proceedings of the 2nd international workshop on biological processes and petri nets (BioPPN2011), pp 135–150
8.
go back to reference Gilbert D, Heiner M, Liu F, Saunders N (2013) Colouring space-a coloured framework for spatial modelling in systems biology. In: Proceedings PETRI NETS 2013, Milano, Springer, LNCS, vol 7927, pp 230–249 Gilbert D, Heiner M, Liu F, Saunders N (2013) Colouring space-a coloured framework for spatial modelling in systems biology. In: Proceedings PETRI NETS 2013, Milano, Springer, LNCS, vol 7927, pp 230–249
9.
go back to reference Zaitsev DA, Zaitsev ID, Shmeleva TR (2017) Infinite petri nets: Part 2, modeling triangular, hexagonal, hypercube and hypertorus structures. Complex Syst 26(4):341–371 MathSciNetCrossRef Zaitsev DA, Zaitsev ID, Shmeleva TR (2017) Infinite petri nets: Part 2, modeling triangular, hexagonal, hypercube and hypertorus structures. Complex Syst 26(4):341–371 MathSciNetCrossRef
10.
go back to reference Zaitsev DA, Zaitsev ID, Shmeleva TR (2017) Infinite petri nets: part 1, modeling square grid structures. Complex Syst 26(2):157–195 MathSciNetCrossRef Zaitsev DA, Zaitsev ID, Shmeleva TR (2017) Infinite petri nets: part 1, modeling square grid structures. Complex Syst 26(2):157–195 MathSciNetCrossRef
11.
go back to reference Giavitto J-L, Klaudel H, Pommereau F (2010) Qualitative modelling and analysis of regulations in multi-cellular systems using petri nets and topological collections. In: Ciobanu G, Koutny M (eds), Membrane computing and biologically inspired process calculi 2010, (MeCBIC 2010) EPTCS 40, pp 162–177 Giavitto J-L, Klaudel H, Pommereau F (2010) Qualitative modelling and analysis of regulations in multi-cellular systems using petri nets and topological collections. In: Ciobanu G, Koutny M (eds), Membrane computing and biologically inspired process calculi 2010, (MeCBIC 2010) EPTCS 40, pp 162–177
12.
go back to reference Zaitsev DA, Shmeleva TR (2011) A parametric colored petri net model of a switched network. Int J Commun Netw Syst Sci 4:65–76 Zaitsev DA, Shmeleva TR (2011) A parametric colored petri net model of a switched network. Int J Commun Netw Syst Sci 4:65–76
13.
go back to reference Zhang JX, Atkinson P, Goodchild MF (2014) In: Scale in spatial information and analysis, CRC Press, Taylor and Francis Group Zhang JX, Atkinson P, Goodchild MF (2014) In: Scale in spatial information and analysis, CRC Press, Taylor and Francis Group
15.
go back to reference Kordon F, Linard A, Paviot-Adet E (2006) Optimized colored nets unfolding. In: Najm E et al. (eds) FORTE 2006, LNCS 4229, pp 340–356 Kordon F, Linard A, Paviot-Adet E (2006) Optimized colored nets unfolding. In: Najm E et al. (eds) FORTE 2006, LNCS 4229, pp 340–356
16.
go back to reference Zaitsev DA, Shmeleva TR, Retschitzegger W, Pröll B (2016) Security of grid structures under disguised traffic attacks. Cluster Comput 19(3) Zaitsev DA, Shmeleva TR, Retschitzegger W, Pröll B (2016) Security of grid structures under disguised traffic attacks. Cluster Comput 19(3)
17.
go back to reference Kusel A et al (2013) Reuse in model-to-model transformation languages: are we there yet?. Softw Syst Model Kusel A et al (2013) Reuse in model-to-model transformation languages: are we there yet?. Softw Syst Model
18.
go back to reference Song A, Wang MZ (2012) Model transformation of coloured petri nets into place/transition nets. J Comput Info Syst 8(12):5025–5034 Song A, Wang MZ (2012) Model transformation of coloured petri nets into place/transition nets. J Comput Info Syst 8(12):5025–5034
21.
go back to reference Miyamoto K (2005) In: Plasma physics and controlled nuclear fusion, Springer Miyamoto K (2005) In: Plasma physics and controlled nuclear fusion, Springer
22.
go back to reference Roosta SH (2000) In: Parallel processing and parallel algorithms, Springer Roosta SH (2000) In: Parallel processing and parallel algorithms, Springer
23.
go back to reference Jensen K, Kristensen LM (2009) In: Coloured petri nets: modelling and validation of concurrent systems, Springer Jensen K, Kristensen LM (2009) In: Coloured petri nets: modelling and validation of concurrent systems, Springer
24.
go back to reference Berthomieu B, Vernadat F (2006) Time petri nets analysis with TINA. In: Proceedings of 3rd international conference on the quantitative evaluation of systems (QEST 2006), IEEE Computer Society Berthomieu B, Vernadat F (2006) Time petri nets analysis with TINA. In: Proceedings of 3rd international conference on the quantitative evaluation of systems (QEST 2006), IEEE Computer Society
Metadata
Title
Spatial Specification of Grid Structures by Petri Nets
Authors
Dmitry A. Zaitsev
Tatiana R. Shmeleva
Werner Retschitzegger
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4687-1_25