Skip to main content
Top

2023 | OriginalPaper | Chapter

5. Species Methods

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Estimating Presence and Abundance of Closed Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is essentially a follow-on from the previous chapter, but with an additional level of complexity. One can simply add an additional subscript to allow for species type and allow for a community approach. Species distribution models for a single species are considered for which there are a large literature and extensive reviews.
Environment and species modeling is discussed in several places, as well as various Bayesian models. Community species play an important role, leading naturally into the consideration of various multivariate species models, including occupancy and spatial models, and time-to-detection models. This topic is closely related to determining species interactions, including the use of Markov networks and state-space modeling. Sometimes, absence information can be used.
An important topic is the determination of the number of species present in a region, called “species richness.” This can be estimated when there are replicate visits. Parametric and nonparametric methods are given for estimating species richness using both incidence and abundance and are discussed in detail. Choosing the sample size for both types of data is considered. A miscellaneous of set of topics follows, namely, the use of environmental DNA, biodiversity with its many measures, the problem of species misidentification, and opportunistic and citizen science surveys and their design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acevedo, M, Corrada-Bravo, C., Corrada-Bravo, H., Villnueva-Rviera, L., & Aide, T. (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of methods. Ecological Informatics, 4(4), 206–214.CrossRef Acevedo, M, Corrada-Bravo, C., Corrada-Bravo, H., Villnueva-Rviera, L., & Aide, T. (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of methods. Ecological Informatics, 4(4), 206–214.CrossRef
go back to reference Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.CrossRef Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.CrossRef
go back to reference Askins, R. A., Philbrick, M. J., & Sugeno, D. S. (1987). Relationship between the regional abundance of forest and the composition of forest bird communities. Biological Conservation, 39(2), 129–152.CrossRef Askins, R. A., Philbrick, M. J., & Sugeno, D. S. (1987). Relationship between the regional abundance of forest and the composition of forest bird communities. Biological Conservation, 39(2), 129–152.CrossRef
go back to reference Azaele, S., Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. (2010). Inferring plant ecosystem organization from species occurrences. Journal of Theoretical Biology, 262(2), 323–329.CrossRef Azaele, S., Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. (2010). Inferring plant ecosystem organization from species occurrences. Journal of Theoretical Biology, 262(2), 323–329.CrossRef
go back to reference Bailey, L. L., Reid, J. A., Forsman, E. D., & Nichols, J. D. (2009). Modeling co-occurence of northern spotted and barred owls: Accounting for detection probability differences. Biological Conservation, 142(12), 2983–2989.CrossRef Bailey, L. L., Reid, J. A., Forsman, E. D., & Nichols, J. D. (2009). Modeling co-occurence of northern spotted and barred owls: Accounting for detection probability differences. Biological Conservation, 142(12), 2983–2989.CrossRef
go back to reference Beissinger, S. R., Iknayan, K. J., & et al. (2016). Incorporating imperfect detection into joint models of communities: A response to Warton et al. Trends in Ecology and Evolution, 31(10), 736–737. Beissinger, S. R., Iknayan, K. J., & et al. (2016). Incorporating imperfect detection into joint models of communities: A response to Warton et al. Trends in Ecology and Evolution, 31(10), 736–737.
go back to reference Belant, J. L., Bled, F., Wilton, C. M., Fyumagwa, R., Mwampeta, S. B., & Beyer, Jr., D. E. (2016). Estimating lion abundance using n-mixture models for social species. Scientific Reports, 6(1), 35920–35920.CrossRef Belant, J. L., Bled, F., Wilton, C. M., Fyumagwa, R., Mwampeta, S. B., & Beyer, Jr., D. E. (2016). Estimating lion abundance using n-mixture models for social species. Scientific Reports, 6(1), 35920–35920.CrossRef
go back to reference Bornand, C. N., K’ery, M., Bueche, L., & Fischer, M. (2014). Hide-and-seek in vegetation: Time-to-detection is an efficient design for estimating detectability and occurrence. Methods in Ecology and Evolution, 5(5), 413–442.CrossRef Bornand, C. N., K’ery, M., Bueche, L., & Fischer, M. (2014). Hide-and-seek in vegetation: Time-to-detection is an efficient design for estimating detectability and occurrence. Methods in Ecology and Evolution, 5(5), 413–442.CrossRef
go back to reference Britzke, E. R., Gillam, E. H., & Murray, K. L. (2013.) Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriologica, 58(2), 109–117.CrossRef Britzke, E. R., Gillam, E. H., & Murray, K. L. (2013.) Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriologica, 58(2), 109–117.CrossRef
go back to reference Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2016). Model selection and assessment for multi-species occupancy models. Ecology, 97(7), 1759–1770.CrossRef Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2016). Model selection and assessment for multi-species occupancy models. Ecology, 97(7), 1759–1770.CrossRef
go back to reference Brotons, L.,Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27(4), 437–448.CrossRef Brotons, L.,Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27(4), 437–448.CrossRef
go back to reference Buckland, S. T., Magurran, A. E., Green, R. E., & Fewster, R. M. (2005). Monitoring changes in biodiversity through composite indices. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1454), 243–254.CrossRef Buckland, S. T., Magurran, A. E., Green, R. E., & Fewster, R. M. (2005). Monitoring changes in biodiversity through composite indices. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1454), 243–254.CrossRef
go back to reference Buckland, S. T., & Johnston, A. (2017). Monitoring the biodiversity of regions: Key principles and possible pitfalls. Biological Conservation, 214, 23–34.CrossRef Buckland, S. T., & Johnston, A. (2017). Monitoring the biodiversity of regions: Key principles and possible pitfalls. Biological Conservation, 214, 23–34.CrossRef
go back to reference Buckland, S. T., Yuan, Y., & Marcon, E. (2017). Measuring temporal trends in biodiversity. Advanced Statistical Analysis, 101(4), 461–474.CrossRef Buckland, S. T., Yuan, Y., & Marcon, E. (2017). Measuring temporal trends in biodiversity. Advanced Statistical Analysis, 101(4), 461–474.CrossRef
go back to reference Callaghan, C. T., Bowler, D. E., Blowes, S. A., Chase, J. M., Lyons, M. B., & Pereira, H. M. (2022). Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere, 13(4), e3966.CrossRef Callaghan, C. T., Bowler, D. E., Blowes, S. A., Chase, J. M., Lyons, M. B., & Pereira, H. M. (2022). Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere, 13(4), e3966.CrossRef
go back to reference Chandler, R. B., Royle, J. A., & King, D. I. (2011). Inference about density and temporary emigration in unmarked populations. Ecology, 92(7), 1429–1435. Errata: Ecology, 95(3), 794. Chandler, R. B., Royle, J. A., & King, D. I. (2011). Inference about density and temporary emigration in unmarked populations. Ecology, 92(7), 1429–1435. Errata: Ecology, 95(3), 794.
go back to reference Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4), 265–270. Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4), 265–270.
go back to reference Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43(4), 783–791.CrossRef Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43(4), 783–791.CrossRef
go back to reference Chao, A. (2005). Species estimation and applications. In N. Balakrishnan, C. B. Read, & B. Vidakovic (Eds.), Encyclopedia of statistical sciences (pp. 7907–7916). New York: Wiley. Chao, A. (2005). Species estimation and applications. In N. Balakrishnan, C. B. Read, & B. Vidakovic (Eds.), Encyclopedia of statistical sciences (pp. 7907–7916). New York: Wiley.
go back to reference Chao, A., & Chiu. C. H. (2012). Estimation of species richness and shared species richness. In N. Balakrishnan (Ed.), Methods and applications of statistics in the atmospheric and earth sciences (pp. 76–111). New York: NY, USA. Chao, A., & Chiu. C. H. (2012). Estimation of species richness and shared species richness. In N. Balakrishnan (Ed.), Methods and applications of statistics in the atmospheric and earth sciences (pp. 76–111). New York: NY, USA.
go back to reference Chao, A., & Chiu, C.-H. (2016a). Species richness: Estimation and comparison. Wiley StatsRef: Statistics Reference Online, 1, 26. Chao, A., & Chiu, C.-H. (2016a). Species richness: Estimation and comparison. Wiley StatsRef: Statistics Reference Online, 1, 26.
go back to reference Chao, A., & Chiu, C.-H. (2016b). Nonparametric estimation and comparison of species richness. Wiley StatsRef: Statistics Reference Online, 1, 11. Chao, A., & Chiu, C.-H. (2016b). Nonparametric estimation and comparison of species richness. Wiley StatsRef: Statistics Reference Online, 1, 11.
go back to reference Chao, A., Chiu, C.-H., Hsieh, T. C., Davis, T., Nipperess, D. A., & Faith, D. P. (2015a). Rarefaction and extrapolation of phylogenetic diversity. Methods in Ecology and Evolution, 6(4), 380–388.CrossRef Chao, A., Chiu, C.-H., Hsieh, T. C., Davis, T., Nipperess, D. A., & Faith, D. P. (2015a). Rarefaction and extrapolation of phylogenetic diversity. Methods in Ecology and Evolution, 6(4), 380–388.CrossRef
go back to reference Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324.CrossRef Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324.CrossRef
go back to reference Chao, A., Chiu, C.-H., Wu, S.-H., Huang, C.-L., & Lin, Y. C. (2019). Comparing two classes of alpha diversities and their corresponding beta and (dis)similarity measures, with an application to the Formosan sika deer Cervus nippon taiouanus reintroduction programme. Methods in Ecology and Evolution, 10(8), 1286–1297.CrossRef Chao, A., Chiu, C.-H., Wu, S.-H., Huang, C.-L., & Lin, Y. C. (2019). Comparing two classes of alpha diversities and their corresponding beta and (dis)similarity measures, with an application to the Formosan sika deer Cervus nippon taiouanus reintroduction programme. Methods in Ecology and Evolution, 10(8), 1286–1297.CrossRef
go back to reference Chao, A., & Colwell, R. K. (2017). Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling (invited article). Statistics and Operation Research Transactions, 41(1), 3–54. Chao, A., & Colwell, R. K. (2017). Thirty years of progeny from Chao’s inequality: Estimating and comparing richness with incidence data and incomplete sampling (invited article). Statistics and Operation Research Transactions, 41(1), 3–54.
go back to reference Chao, A., Colwell, R. K., Chiu, C.-H., Townsend, D., & Murrell, D. (2017). Seen once or more than once: Applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods in Ecology and Evolution, 8(10), 1221–1232.CrossRef Chao, A., Colwell, R. K., Chiu, C.-H., Townsend, D., & Murrell, D. (2017). Seen once or more than once: Applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods in Ecology and Evolution, 8(10), 1221–1232.CrossRef
go back to reference Chao, A., Colwell, R. K., Lin, C.-W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125–1133.CrossRef Chao, A., Colwell, R. K., Lin, C.-W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125–1133.CrossRef
go back to reference Chao, A., Gotelli, N. J., & et al. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. Chao, A., Gotelli, N. J., & et al. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67.
go back to reference Chao, A., Henderson, P. A., & et al. (2021). Measuring temporal change in alpha diversity. A framework integrating taxonomic, phylogenetic and function diversity and the next iNEXT.3D standardization. Methods in Ecology and Evolution, 12(10), 1926–1940. Chao, A., Henderson, P. A., & et al. (2021). Measuring temporal change in alpha diversity. A framework integrating taxonomic, phylogenetic and function diversity and the next iNEXT.3D standardization. Methods in Ecology and Evolution, 12(10), 1926–1940.
go back to reference Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015b). Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology, 96(5), 1189–1201.CrossRef Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015b). Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology, 96(5), 1189–1201.CrossRef
go back to reference Chao, A., Hwang, W.-H., Chen, Y.-C., & Kuo, C.-Y. (2000). Estimating the number of shared species in two communities. Statistica Sinica, 10(1), 227–246. Chao, A., Hwang, W.-H., Chen, Y.-C., & Kuo, C.-Y. (2000). Estimating the number of shared species in two communities. Statistica Sinica, 10(1), 227–246.
go back to reference Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547.CrossRef Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547.CrossRef
go back to reference Chao, A., Kubota, Y., & et al. (2020). Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35(2), 292–314. Chao, A., Kubota, Y., & et al. (2020). Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35(2), 292–314.
go back to reference Chao, A., & Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics, 68(3), 912–921.CrossRef Chao, A., & Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics, 68(3), 912–921.CrossRef
go back to reference Chao, A., Ma, K. H., Hsieh, T. C., & Chiu, C.-H. (2015c). User’s guide for online program SpadeR (Species-richness Prediction and Diversity Estimation in R). Chao, A., Ma, K. H., Hsieh, T. C., & Chiu, C.-H. (2015c). User’s guide for online program SpadeR (Species-richness Prediction and Diversity Estimation in R).
go back to reference Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: A novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091–1110.CrossRef Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: A novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091–1110.CrossRef
go back to reference Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society, Series A, 158(3), 419–466.CrossRef Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society, Series A, 158(3), 419–466.CrossRef
go back to reference Chen, G., Kéry, M., Plattner, M., Ma, K., & Gardner, B. (2013). Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101(1), 183–191.CrossRef Chen, G., Kéry, M., Plattner, M., Ma, K., & Gardner, B. (2013). Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101(1), 183–191.CrossRef
go back to reference Chiarucci, A., Bacaro, G., Rocchini, D., & Fattorini, L. (2008). Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Community Ecology, 9(1), 121–123.CrossRef Chiarucci, A., Bacaro, G., Rocchini, D., & Fattorini, L. (2008). Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Community Ecology, 9(1), 121–123.CrossRef
go back to reference Chiu, C.-H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified Good-Turing frequency formula. Biometrics, 70(3), 671–682.CrossRef Chiu, C.-H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified Good-Turing frequency formula. Biometrics, 70(3), 671–682.CrossRef
go back to reference Clark, J. S., Gelfand, A. E., Woodall, C. W., & Zhu, K. (2014). More than the sum of the parts: Forest climate response from joint species distribution models. Ecological Applications, 24(5), 990–999.CrossRef Clark, J. S., Gelfand, A. E., Woodall, C. W., & Zhu, K. (2014). More than the sum of the parts: Forest climate response from joint species distribution models. Ecological Applications, 24(5), 990–999.CrossRef
go back to reference Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J., & Zhang, S. (2017). Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs, 87(1), 34–56.CrossRef Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J., & Zhang, S. (2017). Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs, 87(1), 34–56.CrossRef
go back to reference Clark, N. J., Wells, K., & Lindberg, O. (2018). Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology, 99(6), 1277–1283.CrossRef Clark, N. J., Wells, K., & Lindberg, O. (2018). Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology, 99(6), 1277–1283.CrossRef
go back to reference Coleman, B. D. (1981). On random placement and species-area relations.Mathematical Biosciences, 54(3), 191–215. Coleman, B. D. (1981). On random placement and species-area relations.Mathematical Biosciences, 54(3), 191–215.
go back to reference Coleman, B. D., Mares M. A., Willig, M. R., & Hsieh, Y.-H. (1982). Randomness, area, and species richness. Ecology, 63(4), 1121–1133.CrossRef Coleman, B. D., Mares M. A., Willig, M. R., & Hsieh, Y.-H. (1982). Randomness, area, and species richness. Ecology, 63(4), 1121–1133.CrossRef
go back to reference Colwell, R. K., Chao, A., & et al. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3–21. Colwell, R. K., Chao, A., & et al. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3–21.
go back to reference Colwell, R. K., & Elsensohn, J. E. (2014). EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography, 37(6), 609–613.CrossRef Colwell, R. K., & Elsensohn, J. E. (2014). EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography, 37(6), 609–613.CrossRef
go back to reference Cox, K. D., Black, M. J., & et al. (2017). Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers. Ecology and Evolution, 7(24), 1213–1226. Cox, K. D., Black, M. J., & et al. (2017). Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers. Ecology and Evolution, 7(24), 1213–1226.
go back to reference D’Amen, M., Rahbek, C., Zimmermann, N. E., & Guisan, A. (2017). Spatial predictions at the community level: From current approaches to future frameworks. Biological Reviews, 92(1), 169–187.CrossRef D’Amen, M., Rahbek, C., Zimmermann, N. E., & Guisan, A. (2017). Spatial predictions at the community level: From current approaches to future frameworks. Biological Reviews, 92(1), 169–187.CrossRef
go back to reference Desmet, P., & Cowling, R. (2004). Using the species-area relationship to set baseline targets for conservation. Ecology and Society, 9(2), article 11. Desmet, P., & Cowling, R. (2004). Using the species-area relationship to set baseline targets for conservation. Ecology and Society, 9(2), article 11.
go back to reference Dorazio, R. M. (2007). On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88(11), 2773–2782.CrossRef Dorazio, R. M. (2007). On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88(11), 2773–2782.CrossRef
go back to reference Dorazio, R. M., & Connor, E. F. (2014). Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat. PLoS One, 9(4), e94323.CrossRef Dorazio, R. M., & Connor, E. F. (2014). Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat. PLoS One, 9(4), e94323.CrossRef
go back to reference Dorazio, R. M., Connor, E. F., & Askins, R. A. (2015). Estimating the effects of habitat and biological interactions in an avian community. PLoS One, 10(8), e0135987.CrossRef Dorazio, R. M., Connor, E. F., & Askins, R. A. (2015). Estimating the effects of habitat and biological interactions in an avian community. PLoS One, 10(8), e0135987.CrossRef
go back to reference Dorazio, R. M., Gotelli, N. J., & Ellison, A. M. (2011). Modern methods of estimating biodiversity from presence-absence surveys. In G. Venora, O. Grillo, & J. Lopez-Pujol (Eds.), Biodiversity loss in a changing planet (pp. 277–302). Rijeka, Croatia: InTech. Dorazio, R. M., Gotelli, N. J., & Ellison, A. M. (2011). Modern methods of estimating biodiversity from presence-absence surveys. In G. Venora, O. Grillo, & J. Lopez-Pujol (Eds.), Biodiversity loss in a changing planet (pp. 277–302). Rijeka, Croatia: InTech.
go back to reference Dorazio, R. M., Kéry, M., Royle, J. A., & Plattner, M. (2010). Models for inference in dynamic metacommunity systems. Ecology, 91(8), 2466–2475.CrossRef Dorazio, R. M., Kéry, M., Royle, J. A., & Plattner, M. (2010). Models for inference in dynamic metacommunity systems. Ecology, 91(8), 2466–2475.CrossRef
go back to reference Dorazio, R. M., & Royle, J. A. (2005a). Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association, 100(470), 389–398.CrossRef Dorazio, R. M., & Royle, J. A. (2005a). Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association, 100(470), 389–398.CrossRef
go back to reference Dorazio, R. M., & Royle, J. A. (2005b). Rejoinder to ‘The performance of mixture models in heterogeneous closed population capture–recapture.’ Biometrics, 61(3), 874–876.CrossRef Dorazio, R. M., & Royle, J. A. (2005b). Rejoinder to ‘The performance of mixture models in heterogeneous closed population capture–recapture.’ Biometrics, 61(3), 874–876.CrossRef
go back to reference Dorazio, R. M., Royle, J. A., Söderström, B., & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842–854.CrossRef Dorazio, R. M., Royle, J. A., Söderström, B., & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842–854.CrossRef
go back to reference Dormann, C. F., Bobrowski, M., & et al. (2018). Biotic interactions in species distribution modelling: 10questions to guide interpretation and avoid false conclusions. Global Ecology and Biography, 27(9), 1004–1016. Dormann, C. F., Bobrowski, M., & et al. (2018). Biotic interactions in species distribution modelling: 10questions to guide interpretation and avoid false conclusions. Global Ecology and Biography, 27(9), 1004–1016.
go back to reference Dormann, C. F., McPherson, J. M., & et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. Dormann, C. F., McPherson, J. M., & et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628.
go back to reference Elith, J., Graham, C. H., & et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. Elith, J., Graham, C. H., & et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.
go back to reference Elith, J., & Leathwick, J. R. (2009) Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697.CrossRef Elith, J., & Leathwick, J. R. (2009) Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697.CrossRef
go back to reference Ellison, A. M. (2010). Partitioning diversity. Ecology, 91(7), 1962–1963.CrossRef Ellison, A. M. (2010). Partitioning diversity. Ecology, 91(7), 1962–1963.CrossRef
go back to reference Fidino, M., Simonis, J. L., & Magle, S. B. (2019). A multistate dynamic occupancy model to estimate local colonization–extinction rates and patterns of co-occurrence between two or more interacting species. Methods in Ecology and Evolution, 10(2), 233–244.CrossRef Fidino, M., Simonis, J. L., & Magle, S. B. (2019). A multistate dynamic occupancy model to estimate local colonization–extinction rates and patterns of co-occurrence between two or more interacting species. Methods in Ecology and Evolution, 10(2), 233–244.CrossRef
go back to reference Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRef Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRef
go back to reference Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42–58.CrossRef Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42–58.CrossRef
go back to reference Fletcher, D. (2018). Model averaging. Heidelberg: Springer Briefs in Statistics.CrossRef Fletcher, D. (2018). Model averaging. Heidelberg: Springer Briefs in Statistics.CrossRef
go back to reference Forbes, A. D. (1995). Classification algorithm evaluation: Five performance measures based on confusion matrices. Journal of Clinical Monitoring, 11(3), 189–206.CrossRef Forbes, A. D. (1995). Classification algorithm evaluation: Five performance measures based on confusion matrices. Journal of Clinical Monitoring, 11(3), 189–206.CrossRef
go back to reference Franklin, J. (2013). Species distribution models in conservation biogeography: Developments and challenges. Diversity and Distributions, 19(10), 1217–1223.CrossRef Franklin, J. (2013). Species distribution models in conservation biogeography: Developments and challenges. Diversity and Distributions, 19(10), 1217–1223.CrossRef
go back to reference Froidevaux J. S. P., Zellweger, F., Bollmann, K., & Obrist, M. K. (2014). Optimizing passive acoustic sampling of bats in forests. Ecology and Evolution, 4(24), 4690–4700.CrossRef Froidevaux J. S. P., Zellweger, F., Bollmann, K., & Obrist, M. K. (2014). Optimizing passive acoustic sampling of bats in forests. Ecology and Evolution, 4(24), 4690–4700.CrossRef
go back to reference Garrard, G. E., Bekessy, S. A., Mccarthy, M. A., & Wintle, B. A. (2008). When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 33(8), 986–998.CrossRef Garrard, G. E., Bekessy, S. A., Mccarthy, M. A., & Wintle, B. A. (2008). When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 33(8), 986–998.CrossRef
go back to reference Garrard, G. E., McCarthy, M. A., Williams, N. S. G., Bekessy, S. A., & Wintle, B. A. (2013). A general model of detectability using species traits. Methods in Ecology and Evolution, 4(1), 45–52.CrossRef Garrard, G. E., McCarthy, M. A., Williams, N. S. G., Bekessy, S. A., & Wintle, B. A. (2013). A general model of detectability using species traits. Methods in Ecology and Evolution, 4(1), 45–52.CrossRef
go back to reference Gelfand, A. E., Schmidt, A. M., Wu, S., Silander, Jr., J. A., Latimer, A., & Rebelo, A. G. (2005). Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54(1), 1–20. Gelfand, A. E., Schmidt, A. M., Wu, S., Silander, Jr., J. A., Latimer, A., & Rebelo, A. G. (2005). Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54(1), 1–20.
go back to reference Gelfand, A. E., Schmidt, A. M., Banerjee, S., & Sirmans, C. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. Test, 13(2), 263–312.CrossRef Gelfand, A. E., Schmidt, A. M., Banerjee, S., & Sirmans, C. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. Test, 13(2), 263–312.CrossRef
go back to reference Gelfand, A. E., & Shirota, S. (2019). Clarifying species dependence under joint species distribution modeling. arXiv:1908.09410 [stat.ME]. Gelfand, A. E., & Shirota, S. (2019). Clarifying species dependence under joint species distribution modeling. arXiv:1908.09410 [stat.ME].
go back to reference Gelfand, A., Silander, Jr., J., Wu, S., Latimer, A., Lewis, P., Rebelo, A., & Holder, M. (2006). Explaining species distribution patterns through hierarchical modeling. Bayesian Analysis, 1(1), 41–92.CrossRef Gelfand, A., Silander, Jr., J., Wu, S., Latimer, A., Lewis, P., Rebelo, A., & Holder, M. (2006). Explaining species distribution patterns through hierarchical modeling. Bayesian Analysis, 1(1), 41–92.CrossRef
go back to reference Giraud, C., Calenge, C., Coron, C., & Juliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics, 72(2), 649–658.CrossRef Giraud, C., Calenge, C., Coron, C., & Juliard, R. (2016). Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics, 72(2), 649–658.CrossRef
go back to reference Godsoe, W. & Harmon, L. J. (2012). How do species interactions affect species distribution models? Ecography 35(9), 811–820.CrossRef Godsoe, W. & Harmon, L. J. (2012). How do species interactions affect species distribution models? Ecography 35(9), 811–820.CrossRef
go back to reference Golding, N. & Harris, D. J. (2015). BayesComm: Bayesian community ecology analysis. – R package ver. 0.1–2. Golding, N. & Harris, D. J. (2015). BayesComm: Bayesian community ecology analysis. – R package ver. 0.1–2.
go back to reference Golding, J. D. Nowak, J. J., & Dreitz, V. J. (2017). A multispecies dependent double-observer model: A new method for estimating multispecies abundance. Ecology and Evolution, 7(10), 3425–3435.CrossRef Golding, J. D. Nowak, J. J., & Dreitz, V. J. (2017). A multispecies dependent double-observer model: A new method for estimating multispecies abundance. Ecology and Evolution, 7(10), 3425–3435.CrossRef
go back to reference Golding, N., Nunn, M. A., & Purse, B. V. (2015). Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites and Vectors, 8(1), 367–377.CrossRef Golding, N., Nunn, M. A., & Purse, B. V. (2015). Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites and Vectors, 8(1), 367–377.CrossRef
go back to reference Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.CrossRef Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.CrossRef
go back to reference Good, I. J. (2000). Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 101–111.CrossRef Good, I. J. (2000). Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 101–111.CrossRef
go back to reference Goodsoe, W., & Harmon, L. J. (2012). How do species interactions affect species distribution models? Ecography, 35(9), 811–820.CrossRef Goodsoe, W., & Harmon, L. J. (2012). How do species interactions affect species distribution models? Ecography, 35(9), 811–820.CrossRef
go back to reference Gotelli, N. J., & Chao, A. (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., Vol. 5, pp. 195–211). Waltham, MA: Academic Press.CrossRef Gotelli, N. J., & Chao, A. (2013). Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., Vol. 5, pp. 195–211). Waltham, MA: Academic Press.CrossRef
go back to reference Guillera-Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography, 40(2), 281–295.CrossRef Guillera-Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography, 40(2), 281–295.CrossRef
go back to reference Guillera-Arroita, J., Lahoz-Monfort, J., & et al. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3–4), 276–292. Guillera-Arroita, J., Lahoz-Monfort, J., & et al. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3–4), 276–292.
go back to reference Guisan, A., Graham, C. H., Elith, J., Huettmann, F., & NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332–340.CrossRef Guisan, A., Graham, C. H., Elith, J., Huettmann, F., & NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332–340.CrossRef
go back to reference Guisan, A., & Rahbek, C. (2011). SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444.CrossRef Guisan, A., & Rahbek, C. (2011). SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444.CrossRef
go back to reference Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.CrossRef Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.CrossRef
go back to reference Hardersen, S., & Corezzola, S. (2014). Plot-based butterfly surveys: Statistical and methodological aspects. Journal of Insect Conservation, 18(6), 1171–1183.CrossRef Hardersen, S., & Corezzola, S. (2014). Plot-based butterfly surveys: Statistical and methodological aspects. Journal of Insect Conservation, 18(6), 1171–1183.CrossRef
go back to reference Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 6(4), 465–473.CrossRef Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model. Methods in Ecology and Evolution, 6(4), 465–473.CrossRef
go back to reference Harris, D. J. (2016). Inferring species interactions from co-occurrence data with Markov networks. Ecology, 97(12), 3308–3314.CrossRef Harris, D. J. (2016). Inferring species interactions from co-occurrence data with Markov networks. Ecology, 97(12), 3308–3314.CrossRef
go back to reference Hefley, T. J., & Hooten, M. B. (2016). Hierarchical species distribution models. Current Landscape Ecology Reports, 1(2), 87–97.CrossRef Hefley, T. J., & Hooten, M. B. (2016). Hierarchical species distribution models. Current Landscape Ecology Reports, 1(2), 87–97.CrossRef
go back to reference Hefley, T. J., Hooten, M. B., Hanks, E. M., Russell, R. E., & Walsh, D. P. (2017a). Dynamic spatio-temporal models for spatial data. Spatial Statistics, 20, 206–220.CrossRef Hefley, T. J., Hooten, M. B., Hanks, E. M., Russell, R. E., & Walsh, D. P. (2017a). Dynamic spatio-temporal models for spatial data. Spatial Statistics, 20, 206–220.CrossRef
go back to reference Henderson, P. A. (2021). Southwoods ecological methods (5th ed.). Chichester: Wiley.CrossRef Henderson, P. A. (2021). Southwoods ecological methods (5th ed.). Chichester: Wiley.CrossRef
go back to reference Higa, M., Yamaura, Y., Koizumi, I., Yabuhara, Y., Senzaki, M., & Ono, S. (2015). Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort. Diversity and Distributions, 21(1), 46–54.CrossRef Higa, M., Yamaura, Y., Koizumi, I., Yabuhara, Y., Senzaki, M., & Ono, S. (2015). Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort. Diversity and Distributions, 21(1), 46–54.CrossRef
go back to reference Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432.CrossRef Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432.CrossRef
go back to reference Hirzel, A. H., Helfer, V., & Metral, R. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145(2), 111–121.CrossRef Hirzel, A. H., Helfer, V., & Metral, R. (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145(2), 111–121.CrossRef
go back to reference Hsieh, T. C., Ma, K. H., Chao, A., & McInerny, G. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456.CrossRef Hsieh, T. C., Ma, K. H., Chao, A., & McInerny, G. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456.CrossRef
go back to reference Hui, F. K. C. (2016). Bayesian ordination and regression analysis of multivariate abundance data in R. Methods in Ecology and Evolution, 7(6), 744–750.CrossRef Hui, F. K. C. (2016). Bayesian ordination and regression analysis of multivariate abundance data in R. Methods in Ecology and Evolution, 7(6), 744–750.CrossRef
go back to reference Iknayn K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging methods to estimate species diversity. Trends in Ecology and Evolution, 29(2), 97–106.CrossRef Iknayn K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging methods to estimate species diversity. Trends in Ecology and Evolution, 29(2), 97–106.CrossRef
go back to reference Jamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2013). Selecting traits that explain species–environment relationships: A generalized linear mixed model approach. Journal of Vegetation Science, 24(6), 988–1000.CrossRef Jamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2013). Selecting traits that explain species–environment relationships: A generalized linear mixed model approach. Journal of Vegetation Science, 24(6), 988–1000.CrossRef
go back to reference Jarzyna, M. A., & Jetz, W. (2016). Detecting the multiple facets of biodiversity. Trends in Ecology and Evolution, 31(11), 527–538.CrossRef Jarzyna, M. A., & Jetz, W. (2016). Detecting the multiple facets of biodiversity. Trends in Ecology and Evolution, 31(11), 527–538.CrossRef
go back to reference Karenyi, N., Nel, R., Altwegg, R., & Sink, K. (2016). Incorporating species detectability into conservation targets based on the species–area relationship. Diversity and Distributions, 22(7–8), 758–769.CrossRef Karenyi, N., Nel, R., Altwegg, R., & Sink, K. (2016). Incorporating species detectability into conservation targets based on the species–area relationship. Diversity and Distributions, 22(7–8), 758–769.CrossRef
go back to reference Keesing, F., Belden, L., & et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652. Keesing, F., Belden, L., & et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652.
go back to reference Kellner, K. F., Parsons, A. W., Kays, R., Millspaugh, J. J., & Rota, C. T. (2022). A two-species occupancy model with a continuous-time detection process reveals spatial and temporal interactions. Journal of Agricultural, Biological, and Environmental Statistics, 27(2), 321–338.CrossRef Kellner, K. F., Parsons, A. W., Kays, R., Millspaugh, J. J., & Rota, C. T. (2022). A two-species occupancy model with a continuous-time detection process reveals spatial and temporal interactions. Journal of Agricultural, Biological, and Environmental Statistics, 27(2), 321–338.CrossRef
go back to reference Kéry, M., & Plattner, M. (2007). Species richness estimation and determinants of species detectability in butterfly monitoring programmes. Ecological Entomology, 32(1), 53–61.CrossRef Kéry, M., & Plattner, M. (2007). Species richness estimation and determinants of species detectability in butterfly monitoring programmes. Ecological Entomology, 32(1), 53–61.CrossRef
go back to reference Kéry, M., & Royle, J. A. (2009). Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MHB. In D. L Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in marked populations (pp. 639–656). Boston, MA: Springer. Environmental and Ecological Statistics. Kéry, M., & Royle, J. A. (2009). Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MHB. In D. L Thomson, E. G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in marked populations (pp. 639–656). Boston, MA: Springer. Environmental and Ecological Statistics.
go back to reference Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Prelude and static models (Vol. 1). London, UK: Academic Press. Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Prelude and static models (Vol. 1). London, UK: Academic Press.
go back to reference Kéry, M., Royle, J. A., Plattner, M., & Dorazio, R. M. (2009). Species richness and occupancy estimation in communities subject to temporary emigration. Ecology, 90(5), 1279–1290.CrossRef Kéry, M., Royle, J. A., Plattner, M., & Dorazio, R. M. (2009). Species richness and occupancy estimation in communities subject to temporary emigration. Ecology, 90(5), 1279–1290.CrossRef
go back to reference Kéry, M., & Schmid, H. (2004). Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology, 5(1), 65–73.CrossRef Kéry, M., & Schmid, H. (2004). Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology, 5(1), 65–73.CrossRef
go back to reference Kéry, M., & Schmid, H. (2006). Estimating species richness: Calibrating a large avian monitoring programme. Journal of Applied Ecology, 43(1), 101–110.CrossRef Kéry, M., & Schmid, H. (2006). Estimating species richness: Calibrating a large avian monitoring programme. Journal of Applied Ecology, 43(1), 101–110.CrossRef
go back to reference Kitzes, J., Harte, J., & Freckleton, R. (2014). Beyond the species–area relationship: Improving macroecological extinction estimates. Methods in Ecology and Evolution, 5(1), 1–8.CrossRef Kitzes, J., Harte, J., & Freckleton, R. (2014). Beyond the species–area relationship: Improving macroecological extinction estimates. Methods in Ecology and Evolution, 5(1), 1–8.CrossRef
go back to reference Lahoz-Monfort, J. J., Guillera-Arroita, G., & Wintle, B. A. (2014). Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23(4), 504–515.CrossRef Lahoz-Monfort, J. J., Guillera-Arroita, G., & Wintle, B. A. (2014). Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23(4), 504–515.CrossRef
go back to reference Landis, J. R., & Koch, G. C. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.CrossRef Landis, J. R., & Koch, G. C. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.CrossRef
go back to reference Lany, N. K., Zarnetske, P. L. Gouhier, T. C., & Menge, B. A. (2017). Incorporating context dependency of species interactions in species distribution models. Integrative and Comparative Biology, 57(1), 159–167.CrossRef Lany, N. K., Zarnetske, P. L. Gouhier, T. C., & Menge, B. A. (2017). Incorporating context dependency of species interactions in species distribution models. Integrative and Comparative Biology, 57(1), 159–167.CrossRef
go back to reference Latimer, A. M., Banerjee, S., Sang, Jr, H., Mosher, E. S., & Silander, Jr, J. A. (2009). Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States. Ecology Letters, 12(2), 144–154.CrossRef Latimer, A. M., Banerjee, S., Sang, Jr, H., Mosher, E. S., & Silander, Jr, J. A. (2009). Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States. Ecology Letters, 12(2), 144–154.CrossRef
go back to reference Latimer, A. M., Wu, S., Gelfand, A. E., & Silander, Jr, J. A. (2006). Building statistical models to analyze species distributions. Ecological Applications, 16(1), 33–50.CrossRef Latimer, A. M., Wu, S., Gelfand, A. E., & Silander, Jr, J. A. (2006). Building statistical models to analyze species distributions. Ecological Applications, 16(1), 33–50.CrossRef
go back to reference Lenoir, J., Bertrand, R., & et al. (2020). Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, Nature, 4(8), 1044–1059. Lenoir, J., Bertrand, R., & et al. (2020). Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, Nature, 4(8), 1044–1059.
go back to reference Levin, S. A. (Ed.) (2013). Encyclopedia of biodiversity (2nd ed.). Elsevier. Levin, S. A. (Ed.) (2013). Encyclopedia of biodiversity (2nd ed.). Elsevier.
go back to reference Lewis, J. S., Bailey, L. L., VandeWoude, S., & Crooks, K. R. (2015). Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecology and Evolution, 5(24), 5946–5961.CrossRef Lewis, J. S., Bailey, L. L., VandeWoude, S., & Crooks, K. R. (2015). Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecology and Evolution, 5(24), 5946–5961.CrossRef
go back to reference Lomolino, M. V. (2000). Ecology’s most general, yet protean pattern: The species-area relationship. Journal of Biogeography, 27(1), 17–26.CrossRef Lomolino, M. V. (2000). Ecology’s most general, yet protean pattern: The species-area relationship. Journal of Biogeography, 27(1), 17–26.CrossRef
go back to reference MacKenzie, D. I., & Bailey, L. L. (2004). Assessing the fit of site-occupancy models. Journal of Agricultural Biological and Environmental Statistics, 9(3), 300–318.CrossRef MacKenzie, D. I., & Bailey, L. L. (2004). Assessing the fit of site-occupancy models. Journal of Agricultural Biological and Environmental Statistics, 9(3), 300–318.CrossRef
go back to reference MacKenzie, D. I., Bailey, L. L., & Nichols, J. D. (2004). Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology, 73(3), 546–555.CrossRef MacKenzie, D. I., Bailey, L. L., & Nichols, J. D. (2004). Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology, 73(3), 546–555.CrossRef
go back to reference Magurran, A. E., & McGill, B. J. (Eds.). (2011). Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press. Magurran, A. E., & McGill, B. J. (Eds.). (2011). Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press.
go back to reference Martinez-Minaya, J., Cameletti, M., Conesa, D., & Pennino, M. G. (2018). Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32(11), 3227–3244.CrossRef Martinez-Minaya, J., Cameletti, M., Conesa, D., & Pennino, M. G. (2018). Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32(11), 3227–3244.CrossRef
go back to reference Mason, N. W. H., Holdaway, R. J., & Richardson, S. J. (2018). Incorporating measurement error in testing for changes in biodiversity. Methods in Ecology and Evolution, 9(5), 1296–1307.CrossRef Mason, N. W. H., Holdaway, R. J., & Richardson, S. J. (2018). Incorporating measurement error in testing for changes in biodiversity. Methods in Ecology and Evolution, 9(5), 1296–1307.CrossRef
go back to reference Matias, M. G., Gravel, D., & et al. (2014). Estimates of species extinctions from species-area relationships strongly depend on ecological context. Ecography, 37(5), 431–442. Matias, M. G., Gravel, D., & et al. (2014). Estimates of species extinctions from species-area relationships strongly depend on ecological context. Ecography, 37(5), 431–442.
go back to reference Mattsson, B. J., Zipkin, E F., Gardner, B., Blank, P. J., Sauer, J. R., & Royle, J. A. (2013). Explaining local-scale species distributions: Relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage. PLoS One, 8(2), e55097.CrossRef Mattsson, B. J., Zipkin, E F., Gardner, B., Blank, P. J., Sauer, J. R., & Royle, J. A. (2013). Explaining local-scale species distributions: Relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage. PLoS One, 8(2), e55097.CrossRef
go back to reference Mayfield, M. M., & D. B. Stouffer. (2017). Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology and Evolution, 1(3), 62–62.CrossRef Mayfield, M. M., & D. B. Stouffer. (2017). Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology and Evolution, 1(3), 62–62.CrossRef
go back to reference Mendes, R. S., Evangelista, L. R., Thomaz, S. M., Agostinho, A. A., & Gomes, L. C. (2008). A unified index to measure ecological diversity and species rarity. Ecography, 31(4), 450–456.CrossRef Mendes, R. S., Evangelista, L. R., Thomaz, S. M., Agostinho, A. A., & Gomes, L. C. (2008). A unified index to measure ecological diversity and species rarity. Ecography, 31(4), 450–456.CrossRef
go back to reference Metcalfe, K., Delavenne, J., & et al. (2013). Impacts of data quality on the se of conservation planning targets the species-area relationship. Biodiversity and Distributions, 19(1), 1–13. Metcalfe, K., Delavenne, J., & et al. (2013). Impacts of data quality on the se of conservation planning targets the species-area relationship. Biodiversity and Distributions, 19(1), 1–13.
go back to reference Miller, D. A. W., Brehme, C. S., Hines, J. E., Nichols, J. D, & Fisher, R. N. (2012). Joint estimation of habitat dynamics and species interactions: Disturbance reduces co-occurrence of non-native predators with an endangered toad. Journal of Animal Ecology, 81(6), 1288–1297.CrossRef Miller, D. A. W., Brehme, C. S., Hines, J. E., Nichols, J. D, & Fisher, R. N. (2012). Joint estimation of habitat dynamics and species interactions: Disturbance reduces co-occurrence of non-native predators with an endangered toad. Journal of Animal Ecology, 81(6), 1288–1297.CrossRef
go back to reference Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef
go back to reference Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A., & Reader, T. (2009). Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. Journal of Biogeography, 36(11), 2085–2095.CrossRef Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A., & Reader, T. (2009). Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. Journal of Biogeography, 36(11), 2085–2095.CrossRef
go back to reference Norberg, A., Abrego, N., & et al. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 89(3), e01370. Norberg, A., Abrego, N., & et al. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 89(3), e01370.
go back to reference Norris, J. L., & Pollock, K. H. (1996a). Nonparametric MLE under two closed capture-recapture models with heterogeneity. Biometrics, 52(2), 639–649.CrossRef Norris, J. L., & Pollock, K. H. (1996a). Nonparametric MLE under two closed capture-recapture models with heterogeneity. Biometrics, 52(2), 639–649.CrossRef
go back to reference Norris, J. L., & Pollock, K. H. (1998). Non-parametric MLE for Poisson species abundance models allowing for heterogeneity between species. Environmental and Ecological Statistics, 5(4), 391–402.CrossRef Norris, J. L., & Pollock, K. H. (1998). Non-parametric MLE for Poisson species abundance models allowing for heterogeneity between species. Environmental and Ecological Statistics, 5(4), 391–402.CrossRef
go back to reference Olds, B. P. Jerde, C. L., & et al. (2016). Estimating species richness using environmental DNA. Ecology and Evolution, 6(12), 4214–4226. Olds, B. P. Jerde, C. L., & et al. (2016). Estimating species richness using environmental DNA. Ecology and Evolution, 6(12), 4214–4226.
go back to reference Ovaskainen, O., Abrego, N., Halme, P., & Dunson, D. (2016a). Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods in Ecology and Evolution, 7(5), 549–555.CrossRef Ovaskainen, O., Abrego, N., Halme, P., & Dunson, D. (2016a). Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods in Ecology and Evolution, 7(5), 549–555.CrossRef
go back to reference Ovaskainen, O., Hottola, J., & Siitonen, J. (2010). Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91(9), 2514–2521.CrossRef Ovaskainen, O., Hottola, J., & Siitonen, J. (2010). Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91(9), 2514–2521.CrossRef
go back to reference Ovaskainen, O., Roy, D. B., Fox, R., & Anderson, B. J. (2016b). Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 7(4), 428–436.CrossRef Ovaskainen, O., Roy, D. B., Fox, R., & Anderson, B. J. (2016b). Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 7(4), 428–436.CrossRef
go back to reference Ovaskainen, O., & Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92(2), 289–295.CrossRef Ovaskainen, O., & Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92(2), 289–295.CrossRef
go back to reference Ovaskainen O., Tikhonov G., & et al. (2017a). How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proceedings of the Royal Society, Series B, 284(1855), 20170768. Ovaskainen O., Tikhonov G., & et al. (2017a). How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proceedings of the Royal Society, Series B, 284(1855), 20170768.
go back to reference Ovaskainen, O., Tikhonov, G., & et al. (2017b). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20(5) 561–576. Ovaskainen, O., Tikhonov, G., & et al. (2017b). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20(5) 561–576.
go back to reference Ozdemir, I., Mert, A., Ozkan, U. Y., Aksan, S., & Unal, Y. (2018). Predicting bird species richness and micro-habitat diversity using satellite data. Forest Ecology and Management, 424, 483–493.CrossRef Ozdemir, I., Mert, A., Ozkan, U. Y., Aksan, S., & Unal, Y. (2018). Predicting bird species richness and micro-habitat diversity using satellite data. Forest Ecology and Management, 424, 483–493.CrossRef
go back to reference Pacifici, K. P., Reich, B. J., Miller, D. A., & et al. (2017). Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology, 98(3), 840–850. Pacifici, K. P., Reich, B. J., Miller, D. A., & et al. (2017). Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology, 98(3), 840–850.
go back to reference Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43(3), 405–412.CrossRef Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43(3), 405–412.CrossRef
go back to reference Peterka, T., Syrovátka, V., & et al. (2020). Is variable plot size a serious constraint in broad-scale vegetation studies? A case study on fens. Journal of Vegetation Science, 31(4), 594–605. Peterka, T., Syrovátka, V., & et al. (2020). Is variable plot size a serious constraint in broad-scale vegetation studies? A case study on fens. Journal of Vegetation Science, 31(4), 594–605.
go back to reference Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Computing (pp. 1–8). Vienna, Austria, March 20–22. Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Computing (pp. 1–8). Vienna, Austria, March 20–22.
go back to reference Pollock, L. J., Tingley, R., & et al. (2014). Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Methods in Ecology and Evolution, 5(5), 397–406. Pollock, L. J., Tingley, R., & et al. (2014). Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Methods in Ecology and Evolution, 5(5), 397–406.
go back to reference Popovic, G. C., Hui, F. K. C., & Warton, D. I. (2018). A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165, 86–100.CrossRef Popovic, G. C., Hui, F. K. C., & Warton, D. I. (2018). A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165, 86–100.CrossRef
go back to reference Popovic, G. C., Warton, D. I., Thomson, F. J., & Hui, F. K. C. (2019). Untangling direct species associations from indirect mediator species effects with graphical models. Methods ini Ecology and Evolution, 10(9) 1571–1583.CrossRef Popovic, G. C., Warton, D. I., Thomson, F. J., & Hui, F. K. C. (2019). Untangling direct species associations from indirect mediator species effects with graphical models. Methods ini Ecology and Evolution, 10(9) 1571–1583.CrossRef
go back to reference Puerta, P., Hunsicker, M. E., Quetglas, A., Alvarez-Berastegui, D., Esteban, A., & Gonzalez. M. (2015). Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the Western Mediterranean Sea. PLoS One, 10(7), e0133439.CrossRef Puerta, P., Hunsicker, M. E., Quetglas, A., Alvarez-Berastegui, D., Esteban, A., & Gonzalez. M. (2015). Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the Western Mediterranean Sea. PLoS One, 10(7), e0133439.CrossRef
go back to reference Richmond, O. M., Hines, J. E.,& Beissinger, S. R. (2010). Two-species occupancy models: A new parameterization applied to co-occurrence of secretive rails. Ecological Applications, 20(7), 2036–2046.CrossRef Richmond, O. M., Hines, J. E.,& Beissinger, S. R. (2010). Two-species occupancy models: A new parameterization applied to co-occurrence of secretive rails. Ecological Applications, 20(7), 2036–2046.CrossRef
go back to reference Rocchini, D., Boyd, D. S., & et al. (2016). Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation, 2(1), 25–36. Rocchini, D., Boyd, D. S., & et al. (2016). Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation, 2(1), 25–36.
go back to reference Rondinini, C., & Chiozza, F. (2010). Quantitative methods for defining percentage area targets for habitat types in conservation planning. Biological Conservation, 143(7), 1646–1653.CrossRef Rondinini, C., & Chiozza, F. (2010). Quantitative methods for defining percentage area targets for habitat types in conservation planning. Biological Conservation, 143(7), 1646–1653.CrossRef
go back to reference Rossi, J.-P. (2011). Rich: An R package to analyse species richness. Diversity, 3(1), 112–120.CrossRef Rossi, J.-P. (2011). Rich: An R package to analyse species richness. Diversity, 3(1), 112–120.CrossRef
go back to reference Rossman, S., Yackulic, C. B., Saunders, S. P., Reid, J., Davis, R., & Zipkin, E. F. (2016). Dynamic N-occupancy models: Estimating demographic rates and local abundance from detection-nondetection data. Ecology, 97(12), 3300–3307.CrossRef Rossman, S., Yackulic, C. B., Saunders, S. P., Reid, J., Davis, R., & Zipkin, E. F. (2016). Dynamic N-occupancy models: Estimating demographic rates and local abundance from detection-nondetection data. Ecology, 97(12), 3300–3307.CrossRef
go back to reference Rota, C. T., Ferreira, M. A. R., & et al. (2016). A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 7(10), 1164–1173. Rota, C. T., Ferreira, M. A. R., & et al. (2016). A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 7(10), 1164–1173.
go back to reference Rota, C. T., Wikle, C. K, Kays, R. W., & et al. (2016). A two-species occupancy model accommodating simultaneous spatial and interspecific dependence. Ecology, 97(1), 48–53. Rota, C. T., Wikle, C. K, Kays, R. W., & et al. (2016). A two-species occupancy model accommodating simultaneous spatial and interspecific dependence. Ecology, 97(1), 48–53.
go back to reference Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B, 71(2), 319–392.CrossRef Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B, 71(2), 319–392.CrossRef
go back to reference Ruiz-Gutiérrez, V., & Zipkin, E. F. (2011). Detection biases yield misleading patterns of species persistence and colonization in fragmented landscapes. Ecosphere, 2(5), 1–14.CrossRef Ruiz-Gutiérrez, V., & Zipkin, E. F. (2011). Detection biases yield misleading patterns of species persistence and colonization in fragmented landscapes. Ecosphere, 2(5), 1–14.CrossRef
go back to reference Sanathanan, L. (1972a). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43(1), 142–152.CrossRef Sanathanan, L. (1972a). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43(1), 142–152.CrossRef
go back to reference Sanathanan, L. (1977). Estimating the size of a truncated sample. Journal of the American Statistical Association, 72(359), 669–672.CrossRef Sanathanan, L. (1977). Estimating the size of a truncated sample. Journal of the American Statistical Association, 72(359), 669–672.CrossRef
go back to reference Sanderlin, J. S., Block, W. M., & Ganey, J. L. (2014). Optimizing study design for multi-species avian monitoring programmes. Journal of Applied Ecology, 51(4), 860–870.CrossRef Sanderlin, J. S., Block, W. M., & Ganey, J. L. (2014). Optimizing study design for multi-species avian monitoring programmes. Journal of Applied Ecology, 51(4), 860–870.CrossRef
go back to reference Schliep, E. M., Lany, N. K., & et al. (2018). Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Global Ecology and Biogeography, 27(1), 142–155. Schliep, E. M., Lany, N. K., & et al. (2018). Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Global Ecology and Biogeography, 27(1), 142–155.
go back to reference Seber, G. A. F. (1984). Multivariate observations. New York: Wiley. Also available in paperback, 2004. Seber, G. A. F. (1984). Multivariate observations. New York: Wiley. Also available in paperback, 2004.
go back to reference Sewell, D., Beebee, T. J. C., & Griffiths, R. A. (2010). Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biological Conservation, 143(9), 2102–2110.CrossRef Sewell, D., Beebee, T. J. C., & Griffiths, R. A. (2010). Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biological Conservation, 143(9), 2102–2110.CrossRef
go back to reference Shea, C. P., Peterson, J. T., Wisniewski, J. M., & Johns, N. A. (2011). Misidentification of freshwater mussel species (Bivalvia: Unionidae): Contributing factors, management implications, and potential solutions. Journal of the North American Benthological Society, 30(2), 446–458.CrossRef Shea, C. P., Peterson, J. T., Wisniewski, J. M., & Johns, N. A. (2011). Misidentification of freshwater mussel species (Bivalvia: Unionidae): Contributing factors, management implications, and potential solutions. Journal of the North American Benthological Society, 30(2), 446–458.CrossRef
go back to reference Shen, T.-J., Chao, A., & Lin, J.-F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology, 84(3), 798–804.CrossRef Shen, T.-J., Chao, A., & Lin, J.-F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology, 84(3), 798–804.CrossRef
go back to reference Singh, S. K., Ash, G. J., & Hodda, M. (2017). Keeping ‘one step ahead’ of invasive species: Using an integrated framework to screen and target species for detailed biosecurity risk assessment. Biological Invasions, 17(4), 1069–1086.CrossRef Singh, S. K., Ash, G. J., & Hodda, M. (2017). Keeping ‘one step ahead’ of invasive species: Using an integrated framework to screen and target species for detailed biosecurity risk assessment. Biological Invasions, 17(4), 1069–1086.CrossRef
go back to reference Sollmann, R., Gardner, B., & et al. (2016). A hierarchical distance sampling model to estimate abundance and covariate associations of species and communities. Methods in Ecology and Evolution, 7(5), 529–537. Sollmann, R., Gardner, B., & et al. (2016). A hierarchical distance sampling model to estimate abundance and covariate associations of species and communities. Methods in Ecology and Evolution, 7(5), 529–537.
go back to reference Song, W., Kim, E., Lee, D., Lee, M., & Jeon, S.-W. (2013). The sensitivity of species distribution modeling to scale differences. Ecological Modelling, 248(10), 113–118.CrossRef Song, W., Kim, E., Lee, D., Lee, M., & Jeon, S.-W. (2013). The sensitivity of species distribution modeling to scale differences. Ecological Modelling, 248(10), 113–118.CrossRef
go back to reference Stoklosa, J., Daly, C., Foster, S. D., Ashcroft, M. B., & Warton D. I. (2015). A climate of uncertainty: Accounting for error in climate variables for species distribution models. Methods in Ecology and Evolution, 6(4), 412–423.CrossRef Stoklosa, J., Daly, C., Foster, S. D., Ashcroft, M. B., & Warton D. I. (2015). A climate of uncertainty: Accounting for error in climate variables for species distribution models. Methods in Ecology and Evolution, 6(4), 412–423.CrossRef
go back to reference Thompson, G. G., Withers, P. C., Pianka, E. R., & Thompson, S. A. (2003). Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Austral Ecology, 28(4), 361–383.CrossRef Thompson, G. G., Withers, P. C., Pianka, E. R., & Thompson, S. A. (2003). Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Austral Ecology, 28(4), 361–383.CrossRef
go back to reference Thorson, J. T., & Barnett, L. A. K. (2017). Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science, 74(5), 1311–1321.CrossRef Thorson, J. T., & Barnett, L. A. K. (2017). Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science, 74(5), 1311–1321.CrossRef
go back to reference Thorson, J. T., Ianelli, J. N., & et al. (2016). Joint dynamic species distribution models: A tool for community ordination and spatio-temporal monitoring. Global Ecology and Biogeography, 25(9), 1144–1158. Thorson, J. T., Ianelli, J. N., & et al. (2016). Joint dynamic species distribution models: A tool for community ordination and spatio-temporal monitoring. Global Ecology and Biogeography, 25(9), 1144–1158.
go back to reference Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J., & Kristensen, K. (2015). Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 6(6), 627–637.CrossRef Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J., & Kristensen, K. (2015). Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 6(6), 627–637.CrossRef
go back to reference Thorson, J. T., Skaug, H. J., & et al. (2015). The importance of spatial models for estimating the strength of density dependence. Ecology, 96(5), 1202–1212. Thorson, J. T., Skaug, H. J., & et al. (2015). The importance of spatial models for estimating the strength of density dependence. Ecology, 96(5), 1202–1212.
go back to reference Thurman, L. L., Barner, A. K., Garcia, T. S., & Chestnut, T. (2019). Testing the link between species interactions and species co-occurrence in a trophic network. Ecography, 42(10), 1658–1670.CrossRef Thurman, L. L., Barner, A. K., Garcia, T. S., & Chestnut, T. (2019). Testing the link between species interactions and species co-occurrence in a trophic network. Ecography, 42(10), 1658–1670.CrossRef
go back to reference Tikhonov, G., Duan, L., & et al. (2020). Computationally efficient joint species distribution modeling of big spatial data. Ecology, 101(2), 1–8. Tikhonov, G., Duan, L., & et al. (2020). Computationally efficient joint species distribution modeling of big spatial data. Ecology, 101(2), 1–8.
go back to reference Tingley, M. W. Nadeau, C. P., Sandor, M. E., & Baselga, A. (2020). Multi-species occupancy models as robust estimators of community richness. Methods in Ecology and Evolution, 11(5), 633–642.CrossRef Tingley, M. W. Nadeau, C. P., Sandor, M. E., & Baselga, A. (2020). Multi-species occupancy models as robust estimators of community richness. Methods in Ecology and Evolution, 11(5), 633–642.CrossRef
go back to reference Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P., & Sattler. T. (2019). Joint species distribution models with species correlations and imperfect detection. Ecology, 100(8), e02754.CrossRef Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P., & Sattler. T. (2019). Joint species distribution models with species correlations and imperfect detection. Ecology, 100(8), e02754.CrossRef
go back to reference Tobler, M. W., Zúñiga Hartley, A., Carrillo-Percastegui, S. E., Powell, G. V. N., & Lukacs, P. (2015). Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. Journal of Applied Ecology, 52(2), 413–421.CrossRef Tobler, M. W., Zúñiga Hartley, A., Carrillo-Percastegui, S. E., Powell, G. V. N., & Lukacs, P. (2015). Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. Journal of Applied Ecology, 52(2), 413–421.CrossRef
go back to reference Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36(12), 2290–2299.CrossRef Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36(12), 2290–2299.CrossRef
go back to reference Waddle, J. H., Dorazio, R. M., Walls, S. C., & et al. (2010). A new parameterization for estimating co-occurrence of interacting species. Ecological Applications, 20(5), 1467–1475. Waddle, J. H., Dorazio, R. M., Walls, S. C., & et al. (2010). A new parameterization for estimating co-occurrence of interacting species. Ecological Applications, 20(5), 1467–1475.
go back to reference Wagner, T., Hansen G. J. A., & et al. (2020). Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models. Canadian Journal of Fisheries and Aquatic Sciences, 77(9), 1540–1551. Wagner, T., Hansen G. J. A., & et al. (2020). Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models. Canadian Journal of Fisheries and Aquatic Sciences, 77(9), 1540–1551.
go back to reference Wang, J.-P. Z., & Lindsay, B. G. (2005). A penalized nonparametric maximum likelihood approach to species richness estimation. Journal of the American Statistical Association, 100(471), 942–959.CrossRef Wang, J.-P. Z., & Lindsay, B. G. (2005). A penalized nonparametric maximum likelihood approach to species richness estimation. Journal of the American Statistical Association, 100(471), 942–959.CrossRef
go back to reference Warton, D. I., Blanchet, F. G., & et al. (2015). So many variables: Joint modeling in community. Trends in Ecology and Evolution, 30(12), 766–799. Warton, D. I., Blanchet, F. G., & et al. (2015). So many variables: Joint modeling in community. Trends in Ecology and Evolution, 30(12), 766–799.
go back to reference Warton, D. I., & Shepherd, L. C. (2010). Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Annals of Applied Statistics, 4(3), 1393–1402.CrossRef Warton, D. I., & Shepherd, L. C. (2010). Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Annals of Applied Statistics, 4(3), 1393–1402.CrossRef
go back to reference Webb, M. H., Wotherspoon, S., & et al. (2014). Location matters: Using spatially explicit occupancy models to predict the distribution of the highly mobile, endangered swift parrot. Biological Conservation, 176, 99–108. Webb, M. H., Wotherspoon, S., & et al. (2014). Location matters: Using spatially explicit occupancy models to predict the distribution of the highly mobile, endangered swift parrot. Biological Conservation, 176, 99–108.
go back to reference White, S., Faulk, E., Tzilkowski, C., Weber, A. S., Marshall, M., & Wagner, T. (2020). Predicting fish species richness and habitat relationships using Bayesian hierarchical multispecies occupancy models. Canadian Journal of Fisheries and Aquatic Sciences, 77(3), 602—610.CrossRef White, S., Faulk, E., Tzilkowski, C., Weber, A. S., Marshall, M., & Wagner, T. (2020). Predicting fish species richness and habitat relationships using Bayesian hierarchical multispecies occupancy models. Canadian Journal of Fisheries and Aquatic Sciences, 77(3), 602—610.CrossRef
go back to reference Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R., McCarthy, M. A., & Freckleton, R. (2012). Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 12(3), 394–404.CrossRef Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R., McCarthy, M. A., & Freckleton, R. (2012). Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 12(3), 394–404.CrossRef
go back to reference Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R., & McCarthy, M. A. (2019). A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 10(2), 198–211.CrossRef Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R., & McCarthy, M. A. (2019). A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 10(2), 198–211.CrossRef
go back to reference Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428.CrossRef Wimmer, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428.CrossRef
go back to reference Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R., & Cariveau, D. P. (2015). Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters, 18(7), 626–635.CrossRef Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R., & Cariveau, D. P. (2015). Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters, 18(7), 626–635.CrossRef
go back to reference Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773.CrossRef Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773.CrossRef
go back to reference Yamaura, Y., Connor, E. F., & et al. (2016). Estimating species—area relationships by modeling abundance and frequency subject to incomplete sampling. Ecology and Evolution, 6(14), 4836–4848. Yamaura, Y., Connor, E. F., & et al. (2016). Estimating species—area relationships by modeling abundance and frequency subject to incomplete sampling. Ecology and Evolution, 6(14), 4836–4848.
go back to reference Yamaura, Y., Kéry, M., & Royle, A. J. (2016). Study of biological communities subject to imperfect detection: Bias and precision of community N-mixture abundance models in small-sample situations. Ecological Research, 31(3), 289–305.CrossRef Yamaura, Y., Kéry, M., & Royle, A. J. (2016). Study of biological communities subject to imperfect detection: Bias and precision of community N-mixture abundance models in small-sample situations. Ecological Research, 31(3), 289–305.CrossRef
go back to reference Yamaura, Y., Royle, J. A., Kuboi, K., Tada, T., Ikeno, S., & Makino, S. (2011). Modelling community dynamics based on species-level abundance models from detection/nondetection data. Journal of Applied Ecology, 48(1), 67–75.CrossRef Yamaura, Y., Royle, J. A., Kuboi, K., Tada, T., Ikeno, S., & Makino, S. (2011). Modelling community dynamics based on species-level abundance models from detection/nondetection data. Journal of Applied Ecology, 48(1), 67–75.CrossRef
go back to reference Yoccoz, N. G., Brathen, K. A., & et al. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21(15), 3647–3655. Yoccoz, N. G., Brathen, K. A., & et al. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21(15), 3647–3655.
go back to reference Zeller, K. A., Nijhawan, S., Salom-Perez, R., Potosme, S. H., & Hines, J. E. (2011). Integrating occupancy modeling and interview data for corridor identification: A case study for jaguars in Nicaragua. Biological Conservation, 144(2), 892–901.CrossRef Zeller, K. A., Nijhawan, S., Salom-Perez, R., Potosme, S. H., & Hines, J. E. (2011). Integrating occupancy modeling and interview data for corridor identification: A case study for jaguars in Nicaragua. Biological Conservation, 144(2), 892–901.CrossRef
go back to reference Zhang, C., Chen, Y., Xu, B., Xue, Y., & Ren, Y. (2018). Comparing the prediction of joint species distribution models with respect to characteristics of sampling data. Ecography, 41(11), 1876–1887.CrossRef Zhang, C., Chen, Y., Xu, B., Xue, Y., & Ren, Y. (2018). Comparing the prediction of joint species distribution models with respect to characteristics of sampling data. Ecography, 41(11), 1876–1887.CrossRef
go back to reference Zipkin, E. F., Dewan, A., & Royle, J. A. (2009). Impact of forest fragmentation on species richness: A hierarchical approach to community modeling. Journal of Applied Ecology, 46(4), 815–822.CrossRef Zipkin, E. F., Dewan, A., & Royle, J. A. (2009). Impact of forest fragmentation on species richness: A hierarchical approach to community modeling. Journal of Applied Ecology, 46(4), 815–822.CrossRef
go back to reference Zurell, D., Franklin, J., & et al. (2020a). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261–1277. Zurell, D., Franklin, J., & et al. (2020a). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261–1277.
go back to reference Zurell, D., Pollock, L. J., & Thuiller, W. (2018). Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments? Ecography, 41(11), 1812–1819.CrossRef Zurell, D., Pollock, L. J., & Thuiller, W. (2018). Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments? Ecography, 41(11), 1812–1819.CrossRef
go back to reference Zurell, D., Zimmermann, N. E., Gross,H., Baltensweiler, A., Sattler, T., & Wüest, R. O. (2020b). Testing species assemblage predictions from stacked and joint species distribution models. Journal of Biogeography, 47(1), 101–113.CrossRef Zurell, D., Zimmermann, N. E., Gross,H., Baltensweiler, A., Sattler, T., & Wüest, R. O. (2020b). Testing species assemblage predictions from stacked and joint species distribution models. Journal of Biogeography, 47(1), 101–113.CrossRef
Metadata
Title
Species Methods
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-39834-6_5

Premium Partner