Skip to main content
Top
Published in: Calcolo 2/2021

01-06-2021

Spectral collocation method for nonlinear Riemann–Liouville fractional differential system

Authors: Zhendong Gu, Yinying Kong

Published in: Calcolo | Issue 2/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spectral collocation method is investigated for the system of nonlinear Riemann–Liouville fractional differential equations (FDEs). The main idea of the presented method is to solve the corresponding system of nonlinear weakly singular Volterra integral equations obtained from the system of FDEs. In order to carry out convergence analysis for the presented method, we investigate the regularity of the solution to the system of FDEs. The provided convergence analysis result shows that the presented method has spectral convergence. Theoretical results are confirmed by numerical experiments. The presented method is applied to solve multi-term nonlinear Riemann–Liouville fractional differential equations and multi-term nonlinear Riemann–Liouville fractional integro-differential equations.
Literature
1.
go back to reference Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge University Press, Cambridge (2004)CrossRef Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge University Press, Cambridge (2004)CrossRef
2.
go back to reference Bu, W., Xiao, A.: An h-p version of the continuous Petrov–Galerkin finite element method for Riemann–Liouville fractional differential equation with novel test basis functions. Numer. Algorithms 81, 529–545 (2019)MathSciNetCrossRef Bu, W., Xiao, A.: An h-p version of the continuous Petrov–Galerkin finite element method for Riemann–Liouville fractional differential equation with novel test basis functions. Numer. Algorithms 81, 529–545 (2019)MathSciNetCrossRef
3.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods (Fundamental in Single Domains). Springer, Berlin (2006)CrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods (Fundamental in Single Domains). Springer, Berlin (2006)CrossRef
4.
go back to reference Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)CrossRef Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)CrossRef
5.
go back to reference Denton, Z., Vatsala, A.S.: Monotone iterative technique for finite systems of nonlinear Riemann-Liouville fractional differential equations. Opusc. Math. 31(3), 327–339 (2011)MathSciNetCrossRef Denton, Z., Vatsala, A.S.: Monotone iterative technique for finite systems of nonlinear Riemann-Liouville fractional differential equations. Opusc. Math. 31(3), 327–339 (2011)MathSciNetCrossRef
6.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRef Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRef
7.
go back to reference Faires, J.D., Burden, R.L.: Numerical Methods. Brooks/Cole Pub. Co., Grove (1998)MATH Faires, J.D., Burden, R.L.: Numerical Methods. Brooks/Cole Pub. Co., Grove (1998)MATH
8.
go back to reference Finat, J., Cuesta-Montero, E.: Image processing by means of a linear integro-differential equation. In: Visualization, Imaging and Image processing, Vol. 1, IASTED (2003) Finat, J., Cuesta-Montero, E.: Image processing by means of a linear integro-differential equation. In: Visualization, Imaging and Image processing, Vol. 1, IASTED (2003)
9.
go back to reference Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)MathSciNetMATH Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)MathSciNetMATH
10.
go back to reference Gu, Z.: Spectral collocation method for system of weakly singular Volterra integral equations. Adv. Comput. Math. 45, 2677–2699 (2019)MathSciNetCrossRef Gu, Z.: Spectral collocation method for system of weakly singular Volterra integral equations. Adv. Comput. Math. 45, 2677–2699 (2019)MathSciNetCrossRef
12.
go back to reference Gu, Z.: Spectral collocation method for nonlinear Riemann–Liouville fractional differential equations. Appl. Numer. Math. 157, 654–669 (2020)MathSciNetCrossRef Gu, Z.: Spectral collocation method for nonlinear Riemann–Liouville fractional differential equations. Appl. Numer. Math. 157, 654–669 (2020)MathSciNetCrossRef
13.
go back to reference Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281(15), 825–843 (2016)MathSciNetMATH Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281(15), 825–843 (2016)MathSciNetMATH
14.
go back to reference Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRef Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann–Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)MathSciNetCrossRef
15.
go back to reference Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43, 77–99 (2017)MathSciNetCrossRef Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43, 77–99 (2017)MathSciNetCrossRef
16.
go back to reference Lederman, C., Roquejoffre, J.M., Wolanski, N.: Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Ann. Mat. Pura Ed Appl. 183(7), 173–239 (2004)MathSciNetCrossRef Lederman, C., Roquejoffre, J.M., Wolanski, N.: Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Ann. Mat. Pura Ed Appl. 183(7), 173–239 (2004)MathSciNetCrossRef
17.
go back to reference Liang, H., Stynes, M.: Collocation methods for general Riemann–Liouville two-point boundary value problems. Adv. Comput. Math. 45(2), 897–928 (2019)MathSciNetCrossRef Liang, H., Stynes, M.: Collocation methods for general Riemann–Liouville two-point boundary value problems. Adv. Comput. Math. 45(2), 897–928 (2019)MathSciNetCrossRef
18.
go back to reference Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)MathSciNetCrossRef Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)MathSciNetCrossRef
19.
go back to reference Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)MathSciNetCrossRef Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)MathSciNetCrossRef
20.
go back to reference Magin, R.L.: Fractional calculus in bioengineering: A tool to model complex dynamics. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 464–469 (2012) Magin, R.L.: Fractional calculus in bioengineering: A tool to model complex dynamics. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 464–469 (2012)
21.
go back to reference Marks, R., Hall, M.: Differintegral interpolation from a bandlimited signal’s samples. IEEE Trans. Acoust. Speech Signal Process. 29(4), 872–877 (1981)CrossRef Marks, R., Hall, M.: Differintegral interpolation from a bandlimited signal’s samples. IEEE Trans. Acoust. Speech Signal Process. 29(4), 872–877 (1981)CrossRef
22.
go back to reference Nerantzaki, M.S., Babouskos, N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36(12), 1894–1907 (2012)MathSciNetCrossRef Nerantzaki, M.S., Babouskos, N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36(12), 1894–1907 (2012)MathSciNetCrossRef
24.
go back to reference Ramirez, J.D., Denton, Z.: Generalized monotone method for multi-order 2-systems of Riemann–Liouville fractional differential equations. Nonlinear Dyn. Syst. Theory 16(3), 246–259 (2016)MathSciNetMATH Ramirez, J.D., Denton, Z.: Generalized monotone method for multi-order 2-systems of Riemann–Liouville fractional differential equations. Nonlinear Dyn. Syst. Theory 16(3), 246–259 (2016)MathSciNetMATH
25.
go back to reference Song, L., Xu, S., Yang, J.: Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 15(3), 616–628 (2010)MathSciNetCrossRef Song, L., Xu, S., Yang, J.: Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 15(3), 616–628 (2010)MathSciNetCrossRef
26.
go back to reference Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72(1), 195–210 (2016)MathSciNetCrossRef Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72(1), 195–210 (2016)MathSciNetCrossRef
Metadata
Title
Spectral collocation method for nonlinear Riemann–Liouville fractional differential system
Authors
Zhendong Gu
Yinying Kong
Publication date
01-06-2021
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2021
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00403-y

Other articles of this Issue 2/2021

Calcolo 2/2021 Go to the issue

Premium Partner