Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 2/2021

21-08-2021 | Original Paper

Spectral efficiency and quantum limit of BPSK transmission in a WDM system in presence of multiple interferers

Authors: Pinakpani Mukherjee, Santu Sarkar, Nikhil R. Das

Published in: Photonic Network Communications | Issue 2/2021

Login to get access
share
SHARE

Abstract

In this paper, the spectral efficiency and quantum limit for transmission of a BPSK signal in a WDM system are computed after analyzing the error probability in the presence of component crosstalk. The analysis of bit error rate (BER) is derived from the non-Gaussian probability density function for finite (N) interferers obtained using a new mathematical formulation employing Maclaurin series expansion of the Nth power of zero-order Bessel function. The model is verified with the experimental data taken from the literature. The effects of number of interfering channels, SNR and data rate on BER are studied. Results show how spectral efficiency and quantum limit deviate from ideal values due to the presence of interferers. The spectral efficiency decreases with the appearance of interferers, thus escalating the transmission cost per bit. From the study of quantum limit, it is seen that the minimum number of photons per bit required for BPSK transmission is to be increased to maintain a fixed BER as the number of interferers increases.
Literature
2.
go back to reference Sarkar, S., Das, N.R.: Study of component crosstalk and obtaining optimum detection threshold for minimum bit-error-rate in a WDM receiver. J. Lightwave Tech. 27, 4366–4373 (2009) CrossRef Sarkar, S., Das, N.R.: Study of component crosstalk and obtaining optimum detection threshold for minimum bit-error-rate in a WDM receiver. J. Lightwave Tech. 27, 4366–4373 (2009) CrossRef
4.
go back to reference Winzer, P.J.: High-spectral-efficiency optical modulation formats. J. Lightwave Technol. 30(24), 3824–3835 (2012) CrossRef Winzer, P.J.: High-spectral-efficiency optical modulation formats. J. Lightwave Technol. 30(24), 3824–3835 (2012) CrossRef
5.
go back to reference Millar, D.S., Koike-Akino, T., Arık, S.Ö., Kojima, K., Parsons, K., Yoshida, T., Sugihara, T.: High-dimensional modulation for coherent optical communications systems. Opt. Express 22(7), 8798–8812 (2014) CrossRef Millar, D.S., Koike-Akino, T., Arık, S.Ö., Kojima, K., Parsons, K., Yoshida, T., Sugihara, T.: High-dimensional modulation for coherent optical communications systems. Opt. Express 22(7), 8798–8812 (2014) CrossRef
6.
go back to reference Dalakas, V., Kamalakis, T.: Comparative study of modulation and coding schemes for coherent indoor optical wireless systems. Opt. Quant. Electron. 48, 374 (2016) CrossRef Dalakas, V., Kamalakis, T.: Comparative study of modulation and coding schemes for coherent indoor optical wireless systems. Opt. Quant. Electron. 48, 374 (2016) CrossRef
7.
go back to reference Mukherjee, P., Sarkar, S., Das, N.R.: An approach for realistic estimation of BER due to signal-component crosstalk in a WDM receiver. Optik 146, 1–7 (2017) CrossRef Mukherjee, P., Sarkar, S., Das, N.R.: An approach for realistic estimation of BER due to signal-component crosstalk in a WDM receiver. Optik 146, 1–7 (2017) CrossRef
8.
go back to reference Ho, K.P.: Analysis of homodyne crosstalk in optical networks using Gram-Charlier Series. J. Lightwave Technol. 17(2), 149–154 (1999) CrossRef Ho, K.P.: Analysis of homodyne crosstalk in optical networks using Gram-Charlier Series. J. Lightwave Technol. 17(2), 149–154 (1999) CrossRef
9.
go back to reference Kamalakis, T., Sphicopoulos, T.: Asymptotic behavior of in-band crosstalk noise in WDM networks. IEEE Photon. Technol. Lett. 15(3), 476–478 (2003) CrossRef Kamalakis, T., Sphicopoulos, T.: Asymptotic behavior of in-band crosstalk noise in WDM networks. IEEE Photon. Technol. Lett. 15(3), 476–478 (2003) CrossRef
11.
go back to reference Camatel, S., Ferrero, V.: Homodyne coherent detection of ASK and PSK signals performed by a subcarrier optical phase-locked loop. IEEE Photon. Technol. Lett. 18(1), 142–144 (2006) CrossRef Camatel, S., Ferrero, V.: Homodyne coherent detection of ASK and PSK signals performed by a subcarrier optical phase-locked loop. IEEE Photon. Technol. Lett. 18(1), 142–144 (2006) CrossRef
12.
go back to reference Camatel, S., Ferrero, V.: 2.5-Gb/s BPSK ultradense WDM homodyne coherent detection using a subcarrier-based optical phase-locked loop. IEEE Photon. Technol. Lett. 18(18), 1919–1921 (2006) CrossRef Camatel, S., Ferrero, V.: 2.5-Gb/s BPSK ultradense WDM homodyne coherent detection using a subcarrier-based optical phase-locked loop. IEEE Photon. Technol. Lett. 18(18), 1919–1921 (2006) CrossRef
13.
go back to reference Ho, K.-P.: Phase-modulated optical communication systems. Springer, New York (2005) Ho, K.-P.: Phase-modulated optical communication systems. Springer, New York (2005)
14.
go back to reference Kahn, J.M., Ho, K.-P.: Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004) CrossRef Kahn, J.M., Ho, K.-P.: Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004) CrossRef
15.
go back to reference Yan, L.-S., Liu, X., Shieh, W.: Toward the Shannon limit of spectral efficiency. Photon. J. IEEE 3(2), 325–330 (2011) CrossRef Yan, L.-S., Liu, X., Shieh, W.: Toward the Shannon limit of spectral efficiency. Photon. J. IEEE 3(2), 325–330 (2011) CrossRef
16.
go back to reference Essiambre, R.-J., Tkach, R.W.: Capacity trends and limits of optical communication networks. Proc. IEEE 100(5), 1035–1055 (2012) CrossRef Essiambre, R.-J., Tkach, R.W.: Capacity trends and limits of optical communication networks. Proc. IEEE 100(5), 1035–1055 (2012) CrossRef
18.
go back to reference Rabiei, A.M., Beaulieu, N.: An analytical expression for the BER of an individually optimal single cochannel interferer BPSK receiver. IEEE Trans. Commun. 55(1), 60–63 (2007) CrossRef Rabiei, A.M., Beaulieu, N.: An analytical expression for the BER of an individually optimal single cochannel interferer BPSK receiver. IEEE Trans. Commun. 55(1), 60–63 (2007) CrossRef
19.
go back to reference Rabiei, A.M., Beaulieu, N.C.: A simple, intuitive expression for the BER of a jointly optimal single cochannel interferer BPSK receiver. IEEE Commun. Lett. 9(3), 201–203 (2005) CrossRef Rabiei, A.M., Beaulieu, N.C.: A simple, intuitive expression for the BER of a jointly optimal single cochannel interferer BPSK receiver. IEEE Commun. Lett. 9(3), 201–203 (2005) CrossRef
20.
go back to reference Saberali, S.M., Amindavar, H., Moghaddamjoo, A.R.: BER calculation and investigation of optimal single user detector for a BPSK signal contaminated by cochannel interferer. IEEE Commun. Lett. 12(10), 705–707 (2008) CrossRef Saberali, S.M., Amindavar, H., Moghaddamjoo, A.R.: BER calculation and investigation of optimal single user detector for a BPSK signal contaminated by cochannel interferer. IEEE Commun. Lett. 12(10), 705–707 (2008) CrossRef
21.
go back to reference Chung, K.: An analytical expression for the BER of optimal single user detection of a BPSK signal contaminated by multiple CCIs. EURASIP J. Wirel. Commun. Netw. 190, 2012 (2012) Chung, K.: An analytical expression for the BER of optimal single user detection of a BPSK signal contaminated by multiple CCIs. EURASIP J. Wirel. Commun. Netw. 190, 2012 (2012)
22.
go back to reference Darshi, S., Bhattacharjee, R.: BER analysis of asynchronised wireless network in presence of non-identically distributed interferers. Wirel. PersCommun. 82, 2583–2600 (2015) CrossRef Darshi, S., Bhattacharjee, R.: BER analysis of asynchronised wireless network in presence of non-identically distributed interferers. Wirel. PersCommun. 82, 2583–2600 (2015) CrossRef
23.
24.
go back to reference Abramowitz, A., Stegun, I.: Handbook of mathematical functions, 9th edn. Dover, New York (1972) MATH Abramowitz, A., Stegun, I.: Handbook of mathematical functions, 9th edn. Dover, New York (1972) MATH
25.
go back to reference Papoulis, A.: Probability, random variable, and stochastic processes. McGraw-Hill, New York (1984) MATH Papoulis, A.: Probability, random variable, and stochastic processes. McGraw-Hill, New York (1984) MATH
26.
go back to reference Proakis, J.G.: Digital communications. McGraw-Hill, New York (2000) MATH Proakis, J.G.: Digital communications. McGraw-Hill, New York (2000) MATH
27.
go back to reference Aldis, J.P., Burr, A.G.: The channel capacity of discrete time phase modulation in AWGN. IEEE Trans. Inf. Theory 39, 184–185 (1993) CrossRef Aldis, J.P., Burr, A.G.: The channel capacity of discrete time phase modulation in AWGN. IEEE Trans. Inf. Theory 39, 184–185 (1993) CrossRef
30.
go back to reference Antonelli, C., Mecozzi, A., Shtaif, M., Winzer, P.J.: Quantum Limits on the Energy Consumption of Optical Transmission Systems. J. Lightwave Technol. 32(10), 1853–1860 (2014) CrossRef Antonelli, C., Mecozzi, A., Shtaif, M., Winzer, P.J.: Quantum Limits on the Energy Consumption of Optical Transmission Systems. J. Lightwave Technol. 32(10), 1853–1860 (2014) CrossRef
31.
go back to reference Jarzyna, M.: Classical capacity per unit cost for quantum channels. Phys. Rev. A 96, 032340 (2017) CrossRef Jarzyna, M.: Classical capacity per unit cost for quantum channels. Phys. Rev. A 96, 032340 (2017) CrossRef
33.
go back to reference Stevens, M.L., Caplan, D.O., Robinson, B.S., Boroson, D.M., Kachelmyer, A.L.: Optical homodyne PSK demonstration of 15 photons per bit at 156 Mbps with rate-1/2 turbo coding. Opt. Express 16, 10412–10420 (2008) CrossRef Stevens, M.L., Caplan, D.O., Robinson, B.S., Boroson, D.M., Kachelmyer, A.L.: Optical homodyne PSK demonstration of 15 photons per bit at 156 Mbps with rate-1/2 turbo coding. Opt. Express 16, 10412–10420 (2008) CrossRef
Metadata
Title
Spectral efficiency and quantum limit of BPSK transmission in a WDM system in presence of multiple interferers
Authors
Pinakpani Mukherjee
Santu Sarkar
Nikhil R. Das
Publication date
21-08-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00945-9