Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

19-07-2017

Spectral Methods for Substantial Fractional Differential Equations

Authors: Can Huang, Zhimin Zhang, Qingshuo Song

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a non-polynomial spectral Petrov–Galerkin method and its associated collocation method for substantial fractional differential equations are proposed, analyzed, and tested. We modify a class of generalized Laguerre polynomials to form our trial basis and test basis. After a proper scaling of these bases, our Petrov–Galerkin method results in diagonal and well-conditioned linear systems for certain types of fractional differential equations. In the meantime, we provide superconvergence points of the Petrov–Galerkin approximation for associated fractional derivative and function value of true solution. Additionally, we present explicit fractional differential collocation matrices based upon Laguerre–Gauss–Radau points. It is noteworthy that the proposed methods allow us to adjust a parameter in the basis according to different given data to maximize the convergence rate. All these findings have been proved rigorously in our convergence analysis and confirmed in our numerical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baeumera, B., Meerschaertb, M.M.: Tempered stable Lvy motion and transient super-diffusion. J. Comp. Appl. Math. 233, 2438–2448 (2010)CrossRef Baeumera, B., Meerschaertb, M.M.: Tempered stable Lvy motion and transient super-diffusion. J. Comp. Appl. Math. 233, 2438–2448 (2010)CrossRef
2.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domains. Springer-Verlag, Berlin (2006)MATH Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domains. Springer-Verlag, Berlin (2006)MATH
3.
go back to reference Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E. 84, 061104 (2011)CrossRef Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E. 84, 061104 (2011)CrossRef
4.
go back to reference Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: M2AN 49(2), 373–394 (2015)MathSciNetMATH Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: M2AN 49(2), 373–394 (2015)MathSciNetMATH
5.
go back to reference Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85, 1603–1638 (2015)MathSciNetCrossRefMATH Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85, 1603–1638 (2015)MathSciNetCrossRefMATH
6.
go back to reference Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRefMATH Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRefMATH
7.
8.
go back to reference Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)CrossRef Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)CrossRef
9.
go back to reference Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)MathSciNetCrossRefMATH Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)MathSciNetCrossRefMATH
10.
go back to reference Guo, B., Wang, L., Wang, Z.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43(6), 2567–2589 (2006)MathSciNetCrossRefMATH Guo, B., Wang, L., Wang, Z.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43(6), 2567–2589 (2006)MathSciNetCrossRefMATH
11.
go back to reference Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)CrossRef Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)CrossRef
12.
go back to reference Huang, C., Zhang, Z.: Convergence of a \(p\)-version/\(hp\)-version method for fractional differential equations. J. Comp. Phys. 286, 118–127 (2015)MathSciNetCrossRefMATH Huang, C., Zhang, Z.: Convergence of a \(p\)-version/\(hp\)-version method for fractional differential equations. J. Comp. Phys. 286, 118–127 (2015)MathSciNetCrossRefMATH
13.
go back to reference Klafter, J., Shlesinger, M.F., Zumofen, G.: Beyond brownian motion. Phys. Today 49(2), 33–39 (1996)CrossRef Klafter, J., Shlesinger, M.F., Zumofen, G.: Beyond brownian motion. Phys. Today 49(2), 33–39 (1996)CrossRef
14.
go back to reference Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84(296), 2665–2700 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84(296), 2665–2700 (2015)MathSciNetCrossRefMATH
15.
16.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anamalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anamalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATH
17.
go back to reference Marom, O., Momoniat, E.: A comparison of numerical solutions of fractional diffusion models in finance. Nonl. Anal.: RWA 10, 3435–3442 (2009)MathSciNetCrossRefMATH Marom, O., Momoniat, E.: A comparison of numerical solutions of fractional diffusion models in finance. Nonl. Anal.: RWA 10, 3435–3442 (2009)MathSciNetCrossRefMATH
18.
go back to reference Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)MathSciNetCrossRefMATH
19.
go back to reference Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)MathSciNetCrossRefMATH
20.
go back to reference Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus, De Gruyter studies in mathematics, vol. 43 Walter de Gruyter, Berlin/Boston, (2012) Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus, De Gruyter studies in mathematics, vol. 43 Walter de Gruyter, Berlin/Boston, (2012)
21.
go back to reference Prudnikov, A.P., Brychkov, Yu.A. Marichev, O.I: Integrals and series, translated from the Russian by N.M. Queen, vol. 2, Gordon and Breach Science, New York, (1986) Prudnikov, A.P., Brychkov, Yu.A. Marichev, O.I: Integrals and series, translated from the Russian by N.M. Queen, vol. 2, Gordon and Breach Science, New York, (1986)
22.
go back to reference Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
23.
24.
go back to reference Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis, and applications, Springer series in computational mathematics, vol. 41. Springer, Berlin, Heidelberg (2011) Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis, and applications, Springer series in computational mathematics, vol. 41. Springer, Berlin, Heidelberg (2011)
25.
go back to reference Szego, G.: Orthogonal polynomials, fourth (ed.) Amer. Math. Soc. Publ., vol.23, Providence, RI, (1975) Szego, G.: Orthogonal polynomials, fourth (ed.) Amer. Math. Soc. Publ., vol.23, Providence, RI, (1975)
26.
go back to reference Tajeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comp. Phys. 220, 813–823 (2007)MathSciNetCrossRefMATH Tajeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comp. Phys. 220, 813–823 (2007)MathSciNetCrossRefMATH
28.
go back to reference Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef
29.
go back to reference Li, X.J., Xu, C.: A space-time spectral method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)MathSciNetCrossRefMATH Li, X.J., Xu, C.: A space-time spectral method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)MathSciNetCrossRefMATH
30.
go back to reference Lin, Y.M., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225(2), 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y.M., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225(2), 1533–1552 (2007)MathSciNetCrossRefMATH
32.
go back to reference Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comp. Phys. 257, 460–480 (2014)MathSciNetCrossRefMATH Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comp. Phys. 257, 460–480 (2014)MathSciNetCrossRefMATH
Metadata
Title
Spectral Methods for Substantial Fractional Differential Equations
Authors
Can Huang
Zhimin Zhang
Qingshuo Song
Publication date
19-07-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0506-8

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner