Skip to main content
Top
Published in: Wireless Networks 6/2019

28-03-2018

Spectrum and energy efficiency of cooperative spectrum prediction in cognitive radio networks

Authors: Nagwa Shaghluf, T. Aaron Gulliver

Published in: Wireless Networks | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the spectrum and energy efficiency of cooperative spectrum prediction (CSP) in cognitive radio networks are investigated. In addition, the performance of cooperative spectrum prediction is evaluated using a hidden Markov model (HMM) and a multilayer perceptron (MLP) neural network. The cooperation between secondary users in predicting the next channel status employs AND, OR and majority rule fusion schemes. These schemes are compared for HMM and MLP predictors as a function of channel occupancy in term of prediction error, spectrum efficiency and energy efficiency. The impact of busy and idle state prediction errors on the spectrum efficiency is also investigated. Simulation results are presented which show a significant improvement in the spectrum efficiency of the secondary users CSP with the majority rule at the cost of a small degradation in energy efficiency compared to single spectrum prediction and traditional spectrum sensing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hu, H., Zhang, H., & Liang, Y. C. (2016). On the spectrum- and energy efficiency tradeoff in cognitive radio networks. IEEE Transactions on Communications, 64(2), 490–501.CrossRef Hu, H., Zhang, H., & Liang, Y. C. (2016). On the spectrum- and energy efficiency tradeoff in cognitive radio networks. IEEE Transactions on Communications, 64(2), 490–501.CrossRef
2.
go back to reference Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef
3.
go back to reference Xing, X., Jing, T., Cheng, W., Huo, Y., Cheng, X., & Znati, T. (2014). Cooperative spectrum prediction in multi-PU multi-SU cognitive radio networks. Mobile Networks and Applications, 19(4), 502–511.CrossRef Xing, X., Jing, T., Cheng, W., Huo, Y., Cheng, X., & Znati, T. (2014). Cooperative spectrum prediction in multi-PU multi-SU cognitive radio networks. Mobile Networks and Applications, 19(4), 502–511.CrossRef
4.
go back to reference Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.CrossRef Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.CrossRef
5.
go back to reference Eltom, H., Kandeepan, S., Liang, Y. C., Moran, B., & Evans, R. J. (2016). HMM based cooperative spectrum occupancy prediction using hard fusion. In IEEE international conference on communications workshops (pp. 669–675). Eltom, H., Kandeepan, S., Liang, Y. C., Moran, B., & Evans, R. J. (2016). HMM based cooperative spectrum occupancy prediction using hard fusion. In IEEE international conference on communications workshops (pp. 669–675).
6.
go back to reference Chatziantoniou, E., Allen, B. & Velisavljevic, V. (2013). An HMM-based spectrum occupancy predictor for energy efficient cognitive radio. In IEEE international symposium on personal indoor and mobile radio communications (pp. 601–605). Chatziantoniou, E., Allen, B. & Velisavljevic, V. (2013). An HMM-based spectrum occupancy predictor for energy efficient cognitive radio. In IEEE international symposium on personal indoor and mobile radio communications (pp. 601–605).
7.
go back to reference Ahmadi, H., Chew, Y. H., Tang, P. K., & Nijsure, Y. A. (2011). Predictive opportunistic spectrum access using learning based hidden Markov models. In IEEE international symposium on personal indoor and mobile radio communications (pp. 401–405). Ahmadi, H., Chew, Y. H., Tang, P. K., & Nijsure, Y. A. (2011). Predictive opportunistic spectrum access using learning based hidden Markov models. In IEEE international symposium on personal indoor and mobile radio communications (pp. 401–405).
8.
go back to reference Ahmadi, H., Macaluso, I., & DaSilva, L. A. (2013). The effect of the spectrum opportunities diversity on opportunistic access. In IEEE international conference on communications (pp. 2829–2834). Ahmadi, H., Macaluso, I., & DaSilva, L. A. (2013). The effect of the spectrum opportunities diversity on opportunistic access. In IEEE international conference on communications (pp. 2829–2834).
9.
go back to reference Macaluso, I., Finn, D., Ozgul, B., & DaSilva, L. A. (2013). Complexity of spectrum activity and benefits of reinforcement learning for dynamic channel selection. IEEE Journal on Selected Areas in Communications, 31(11), 2237–2248.CrossRef Macaluso, I., Finn, D., Ozgul, B., & DaSilva, L. A. (2013). Complexity of spectrum activity and benefits of reinforcement learning for dynamic channel selection. IEEE Journal on Selected Areas in Communications, 31(11), 2237–2248.CrossRef
10.
go back to reference Macaluso, I., Ahmadi, H., & DaSilva, L. A. (2015). Fungible orthogonal channel sets for multi-user exploitation of spectrum. IEEE Transactions on Wireless Communications, 14(4), 2281–2293.CrossRef Macaluso, I., Ahmadi, H., & DaSilva, L. A. (2015). Fungible orthogonal channel sets for multi-user exploitation of spectrum. IEEE Transactions on Wireless Communications, 14(4), 2281–2293.CrossRef
11.
go back to reference Yang, J., Zhao, H. S., Chen, X., Xu, J. Y., & Zhang, J. Z. (2014). Energy-efficient design of spectrum prediction in cognitive radio networks: Prediction strategy and communication environment. Prediction strategy and communication environment. In International conference on signal processing (pp. 154–158). Yang, J., Zhao, H. S., Chen, X., Xu, J. Y., & Zhang, J. Z. (2014). Energy-efficient design of spectrum prediction in cognitive radio networks: Prediction strategy and communication environment. Prediction strategy and communication environment. In International conference on signal processing (pp. 154–158).
12.
go back to reference Tumuluru, V. K., Wang, P., & Niyato, D. (2012). Channel status prediction for cognitive radio networks. Wireless Communications and Mobile Computing, 12(10), 862–874.CrossRef Tumuluru, V. K., Wang, P., & Niyato, D. (2012). Channel status prediction for cognitive radio networks. Wireless Communications and Mobile Computing, 12(10), 862–874.CrossRef
13.
go back to reference Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef
14.
go back to reference Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef
15.
16.
go back to reference Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef
Metadata
Title
Spectrum and energy efficiency of cooperative spectrum prediction in cognitive radio networks
Authors
Nagwa Shaghluf
T. Aaron Gulliver
Publication date
28-03-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1720-5

Other articles of this Issue 6/2019

Wireless Networks 6/2019 Go to the issue