Skip to main content
Top
Published in: Neural Computing and Applications 8/2019

09-01-2018 | Original Article

SpikeCD: a parameter-insensitive spiking neural network with clustering degeneracy strategy

Authors: Peng Lin, Sheng Chang, Hao Wang, Qijun Huang, Jin He

Published in: Neural Computing and Applications | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A clustering degeneracy algorithm, called SpikeCD, with spiking RBF neurons for classification is proposed in this paper. Unlike traditional spiking RBF networks where their performance severely relies on the time-costing process of parameter optimization, SpikeCD uses a clustering degeneracy strategy to adjust the number and centers of spiking RBF neurons, which is insensitive to parameters. A supervised learning is followed to improve network’s classification ability. Its performance is demonstrated on several benchmark datasets from the UCI Machine Learning Repository and image datasets. The results show SpikeCD can achieve good classification accuracy with simple structure. Moreover, the variation of parameters has a little effect on it. We hope this algorithm can be a new inspiration for improving the robustness of evolving spiking neural networks and other machine learning methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol 86, pp 2278–2324 LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol 86, pp 2278–2324
3.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (eds) NIPS, pp 1106–1114 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (eds) NIPS, pp 1106–1114
4.
go back to reference Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: CVPR. IEEE Computer Society, pp 1701–1708 Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: CVPR. IEEE Computer Society, pp 1701–1708
5.
go back to reference Silver D, Huang A et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef Silver D, Huang A et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef
6.
go back to reference Wang W, Subagdja B, Tan A-H, Starzyk JA (2012) Neural modeling of episodic memory: encoding, retrieval, and forgetting. IEEE Trans Neural Netw Learn Syst 23(10):1574–1586CrossRef Wang W, Subagdja B, Tan A-H, Starzyk JA (2012) Neural modeling of episodic memory: encoding, retrieval, and forgetting. IEEE Trans Neural Netw Learn Syst 23(10):1574–1586CrossRef
7.
go back to reference Yu Q, Tang H, Tan KC, Li H (2013) Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans Neural Netw Learn Syst 24(10):1539–1552CrossRef Yu Q, Tang H, Tan KC, Li H (2013) Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans Neural Netw Learn Syst 24(10):1539–1552CrossRef
8.
go back to reference Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007) Temporal precision in the neural code and the timescales of natural vision. Nature 449(7158):92–95CrossRef Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007) Temporal precision in the neural code and the timescales of natural vision. Nature 449(7158):92–95CrossRef
9.
go back to reference Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–745CrossRef Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–745CrossRef
10.
go back to reference Yu Q, Yan R, Tang H, Tan KC, Li H (2016) A spiking neural network system for robust sequence recognition. IEEE Trans Neural Netw Learn Syst 27(3):621–635MathSciNetCrossRef Yu Q, Yan R, Tang H, Tan KC, Li H (2016) A spiking neural network system for robust sequence recognition. IEEE Trans Neural Netw Learn Syst 27(3):621–635MathSciNetCrossRef
11.
go back to reference Bohte S, Poutre HL, Kok J (2002) Spike-prop: error-backpropagation for networks of spiking neurons. Neurocomputing 48(1–4):17–37CrossRefMATH Bohte S, Poutre HL, Kok J (2002) Spike-prop: error-backpropagation for networks of spiking neurons. Neurocomputing 48(1–4):17–37CrossRefMATH
12.
go back to reference Schrauwen B, Campenhout JV (2004) Improving spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In: Proceedings of prorisc workshop Schrauwen B, Campenhout JV (2004) Improving spikeprop: Enhancements to an error-backpropagation rule for spiking neural networks. In: Proceedings of prorisc workshop
13.
go back to reference Ponulak F, Kasinski AJ (2010) Supervised learning in spiking neural networks with resume: Sequence learning, classification, and spike shifting. Neural Comput 22(2):467–510MathSciNetCrossRefMATH Ponulak F, Kasinski AJ (2010) Supervised learning in spiking neural networks with resume: Sequence learning, classification, and spike shifting. Neural Comput 22(2):467–510MathSciNetCrossRefMATH
14.
go back to reference Ponulak F (2008) Analysis of the resume learning process for spiking neural networks. Appl Math Comput Sci 18(2):117–127MathSciNet Ponulak F (2008) Analysis of the resume learning process for spiking neural networks. Appl Math Comput Sci 18(2):117–127MathSciNet
15.
go back to reference Kasinski AJ, Ponulak F (2005) Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In: Duch W, Kacprzyk J, Oja E, Zadrozny S (eds) ICANN (1), volume 3696 of lecture notes in computer science. Springer, pp 145–152 Kasinski AJ, Ponulak F (2005) Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In: Duch W, Kacprzyk J, Oja E, Zadrozny S (eds) ICANN (1), volume 3696 of lecture notes in computer science. Springer, pp 145–152
16.
go back to reference Florian RV (2012) The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS ONE 7(8):e40233CrossRef Florian RV (2012) The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS ONE 7(8):e40233CrossRef
17.
go back to reference Hopfield J (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376:3–36CrossRef Hopfield J (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376:3–36CrossRef
18.
go back to reference Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons. Network 9(3):319CrossRefMATH Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons. Network 9(3):319CrossRefMATH
19.
go back to reference Bohte SM, Poutr HL, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans Neural Netw 13(2):426–435CrossRef Bohte SM, Poutr HL, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans Neural Netw 13(2):426–435CrossRef
20.
go back to reference Wysoski SG, Benuskova L, Kasabov N (2006) On-line learning with structural adaptation in a network of spiking neurons for visual pattern recognition. In: Kollias SD, Stafylopatis A, Duch W, Oja E (eds) ICANN (1), volume 4131 of lecture notes in computer science. Springer, pp 61–70 Wysoski SG, Benuskova L, Kasabov N (2006) On-line learning with structural adaptation in a network of spiking neurons for visual pattern recognition. In: Kollias SD, Stafylopatis A, Duch W, Oja E (eds) ICANN (1), volume 4131 of lecture notes in computer science. Springer, pp 61–70
21.
go back to reference Dhoble K, Nuntalid N, Indiveri G, Kasabov N (2012) Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning. In: IJCNN. IEEE, pp 1–7 Dhoble K, Nuntalid N, Indiveri G, Kasabov N (2012) Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning. In: IJCNN. IEEE, pp 1–7
22.
go back to reference Delorme A, Thorpe S (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14:795–803CrossRef Delorme A, Thorpe S (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14:795–803CrossRef
23.
go back to reference Delorme A, Gautrais J, Thorpe S (1999) Spikenet: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26:989CrossRef Delorme A, Gautrais J, Thorpe S (1999) Spikenet: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26:989CrossRef
24.
go back to reference Delorme A, Perrinet L, Thorpe SJ (2001) Networks of integrate-and-fire neurons using Rank Order Coding B: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38–40:539–545CrossRef Delorme A, Perrinet L, Thorpe SJ (2001) Networks of integrate-and-fire neurons using Rank Order Coding B: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38–40:539–545CrossRef
25.
go back to reference Dora S, Suresh S, Sundararajan N (2015) A two stage learning algorithm for a growing-pruning spiking neural network for pattern classification problems. In: IJCNN. IEEE, pp 1–7 Dora S, Suresh S, Sundararajan N (2015) A two stage learning algorithm for a growing-pruning spiking neural network for pattern classification problems. In: IJCNN. IEEE, pp 1–7
26.
go back to reference Kasabov NK (2014) NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef Kasabov NK (2014) NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef
27.
go back to reference Kasabov N, Feigin V, Hou Z-G, Chen Y, Liang L, Krishnamurthi R, Othman M, Parmar P (2014) Evolving spiking neural networks for personalized modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134:269–279CrossRef Kasabov N, Feigin V, Hou Z-G, Chen Y, Liang L, Krishnamurthi R, Othman M, Parmar P (2014) Evolving spiking neural networks for personalized modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134:269–279CrossRef
28.
go back to reference Doborjeh MG, Wang GY, Kasabov NK, Kydd R, Russell B (2016) A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans Biomed Eng 63(9):1830–1841CrossRef Doborjeh MG, Wang GY, Kasabov NK, Kydd R, Russell B (2016) A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans Biomed Eng 63(9):1830–1841CrossRef
29.
go back to reference Wang J, Belatreche A, Maguire LP, McGinnity TM (2017) Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure. IEEE Trans Neural Netw Learn Syst 28(1):30–43CrossRef Wang J, Belatreche A, Maguire LP, McGinnity TM (2017) Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure. IEEE Trans Neural Netw Learn Syst 28(1):30–43CrossRef
30.
go back to reference Wang J, Belatreche A, Maguire LP, McGinnity TM (2014) An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536CrossRef Wang J, Belatreche A, Maguire LP, McGinnity TM (2014) An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536CrossRef
31.
go back to reference Wang J, Belatreche A, Maguire LP, McGinnity TM (2015) Dynamically evolving spiking neural network for pattern recognition. In: IJCNN. IEEE, pp 1–8 Wang J, Belatreche A, Maguire LP, McGinnity TM (2015) Dynamically evolving spiking neural network for pattern recognition. In: IJCNN. IEEE, pp 1–8
32.
go back to reference O’Keefe J, Reece M (1993) Phase relationship between hippocampal place units and the hippocampal theta rhythm. Hippocampus 3:317–330CrossRef O’Keefe J, Reece M (1993) Phase relationship between hippocampal place units and the hippocampal theta rhythm. Hippocampus 3:317–330CrossRef
33.
go back to reference Haberly LB (1985) Neuronal circuitry in olfactory cortex: anatomy and functional implications. Chem Senses 10(2):219–238CrossRef Haberly LB (1985) Neuronal circuitry in olfactory cortex: anatomy and functional implications. Chem Senses 10(2):219–238CrossRef
34.
go back to reference Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, CambridgeCrossRefMATH Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, CambridgeCrossRefMATH
36.
go back to reference Zhang H, Chow TW, Wu QJ (2016) Organizing books and authors by multilayer SOM. IEEE Trans Neural Netw Learn Syst 27(12):2537–2550CrossRef Zhang H, Chow TW, Wu QJ (2016) Organizing books and authors by multilayer SOM. IEEE Trans Neural Netw Learn Syst 27(12):2537–2550CrossRef
37.
go back to reference Zhang H, Cao X, Ho JK et al (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13:520–531CrossRef Zhang H, Cao X, Ho JK et al (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13:520–531CrossRef
38.
go back to reference Oyedotun OK, Khashman A (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28:3941–3951CrossRef Oyedotun OK, Khashman A (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28:3941–3951CrossRef
Metadata
Title
SpikeCD: a parameter-insensitive spiking neural network with clustering degeneracy strategy
Authors
Peng Lin
Sheng Chang
Hao Wang
Qijun Huang
Jin He
Publication date
09-01-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3336-6

Other articles of this Issue 8/2019

Neural Computing and Applications 8/2019 Go to the issue

Brain- Inspired computing and Machine learning for Brain Health

An improved TLBO with logarithmic spiral and triangular mutation for global optimization

Premium Partner