Skip to main content
Top
Published in: Natural Computing 1/2020

17-01-2019

Spiking neural networks modelled as timed automata: with parameter learning

Authors: Elisabetta De Maria, Cinzia Di Giusto, Laetitia Laversa

Published in: Natural Computing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we address the issue of automatically learning parameters of spiking neural networks. Biological neurons are formalized as timed automata and synaptical connections are represented as shared channels among these automata. Such a formalism allows us to take into account several time-related aspects, such as the influence of past inputs in the computation of the potential value of each neuron, or the presence of the refractory period, a lapse of time immediately following the spike emission in which the neuron cannot emit. The proposed model is then formally validated: more precisely, we ensure that some relevant properties expressed as temporal logical formulae hold in the model. Once the validation step is accomplished, we take advantage of the proposed model to write an algorithm for learning synaptical weight values such that an expected behavior can be displayed. The technique we present takes inspiration from supervised learning ones: we compare the effective output of the network to the expected one and backpropagate proper corrective actions in the network. We develop several case studies including a mutual inhibition network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The initial delay is required in order to make the formula hold for the first output spike too.
 
Literature
go back to reference Ackley DH, Hinton GE, Sejnowski TJ (1988) A learning algorithm for Boltzmann machines. In: Waltz D, Feldman JA (eds) Connectionist models and their implications: readings from cognitive science. Ablex Publishing Corp., Norwood, pp 285–307 Ackley DH, Hinton GE, Sejnowski TJ (1988) A learning algorithm for Boltzmann machines. In: Waltz D, Feldman JA (eds) Connectionist models and their implications: readings from cognitive science. Ablex Publishing Corp., Norwood, pp 285–307
go back to reference Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W (1995) Uppaal—a tool suite for automatic verification of real-time systems. In: Proceedings of workshop on verification and control of hybrid systems III, no. 1066 in Lecture notes in computer science. Springer, pp 232–243 Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W (1995) Uppaal—a tool suite for automatic verification of real-time systems. In: Proceedings of workshop on verification and control of hybrid systems III, no. 1066 in Lecture notes in computer science. Springer, pp 232–243
go back to reference Bohte SM, Poutr HAL, Kok JN, La HA, Joost P, Kok N (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48:17–37CrossRef Bohte SM, Poutr HAL, Kok JN, La HA, Joost P, Kok N (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48:17–37CrossRef
go back to reference Cinquin O, Demongeot J (2005) High-dimensional switches and the modelling of cellular differentiation. J Theor Biol 233(3):391–411CrossRef Cinquin O, Demongeot J (2005) High-dimensional switches and the modelling of cellular differentiation. J Theor Biol 233(3):391–411CrossRef
go back to reference Clarke EM Jr, Grumberg O, Peled DA (1999) Model checking. MIT Press, CambridgeMATH Clarke EM Jr, Grumberg O, Peled DA (1999) Model checking. MIT Press, CambridgeMATH
go back to reference D’Angelo E, Danese G, Florimbi G, Leporati F, Majani A, Masoli S, Solinas S, Torti E (2015) The human brain project: high performance computing for brain cells hw/sw simulation and understanding. In: 2015 Euromicro conference on digital system design, DSD 2015, Madeira, Portugal, August 26–28, 2015. IEEE Computer Society, pp 740–747. https://doi.org/10.1109/DSD.2015.80 D’Angelo E, Danese G, Florimbi G, Leporati F, Majani A, Masoli S, Solinas S, Torti E (2015) The human brain project: high performance computing for brain cells hw/sw simulation and understanding. In: 2015 Euromicro conference on digital system design, DSD 2015, Madeira, Portugal, August 26–28, 2015. IEEE Computer Society, pp 740–747. https://​doi.​org/​10.​1109/​DSD.​2015.​80
go back to reference De Maria E, Di Giusto C (2018) Parameter learning for spiking neural networks modelled as timed automata. In: Anderson P, Gamboa H, Fred ALN, Badia SB (eds) Proceedings of the 11th international joint conference on biomedical engineering systems and technologies (BIOSTEC 2018)—volume 3: BIOINFORMATICS, Funchal, January 19–21, 2018. SciTePress, pp 17–28. https://doi.org/10.5220/0006530300170028 De Maria E, Di Giusto C (2018) Parameter learning for spiking neural networks modelled as timed automata. In: Anderson P, Gamboa H, Fred ALN, Badia SB (eds) Proceedings of the 11th international joint conference on biomedical engineering systems and technologies (BIOSTEC 2018)—volume 3: BIOINFORMATICS, Funchal, January 19–21, 2018. SciTePress, pp 17–28. https://​doi.​org/​10.​5220/​0006530300170028​
go back to reference De Maria E, Muzy A, Gaffé D, Ressouche A, Grammont F (2016) Verification of temporal properties of neuronal archetypes using synchronous models. In: 5th International workshop on hybrid systems biology, Grenoble De Maria E, Muzy A, Gaffé D, Ressouche A, Grammont F (2016) Verification of temporal properties of neuronal archetypes using synchronous models. In: 5th International workshop on hybrid systems biology, Grenoble
go back to reference De Maria E, Di Giusto C, Ciatto G (2017a) Formal validation of neural networks as timed automata. In: Proceedings of the 8th international conference on computational systems-biology and bioinformatics, Nha Trang City, Viet Nam, December 7–8, 2017. ACM, pp 15–22. https://doi.org/10.1145/3156346.3156350 De Maria E, Di Giusto C, Ciatto G (2017a) Formal validation of neural networks as timed automata. In: Proceedings of the 8th international conference on computational systems-biology and bioinformatics, Nha Trang City, Viet Nam, December 7–8, 2017. ACM, pp 15–22. https://​doi.​org/​10.​1145/​3156346.​3156350
go back to reference Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46(2):233–253MathSciNetCrossRef Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46(2):233–253MathSciNetCrossRef
go back to reference Freund Y, Schapire RE (1999) Large margin classification using the perceptron algorithm. Mach Learn 37(3):277–296CrossRef Freund Y, Schapire RE (1999) Large margin classification using the perceptron algorithm. Mach Learn 37(3):277–296CrossRef
go back to reference Gerstner W, Kistler W (2002) Spiking neuron models: an introduction. Cambridge University Press, New YorkCrossRef Gerstner W, Kistler W (2002) Spiking neuron models: an introduction. Cambridge University Press, New YorkCrossRef
go back to reference Gruber H, Holzer M, Kiehn A, König B (2005) On timed automata with discrete time-structural and language theoretical characterization. In: Developments in language theory, 9th international conference, DLT 2005, Palermo, Italy, July 4–8, 2005, Proceedings, pp 272–283. https://doi.org/10.1007/1150587724 Gruber H, Holzer M, Kiehn A, König B (2005) On timed automata with discrete time-structural and language theoretical characterization. In: Developments in language theory, 9th international conference, DLT 2005, Palermo, Italy, July 4–8, 2005, Proceedings, pp 272–283. https://​doi.​org/​10.​1007/​1150587724
go back to reference Hebb DO (1949) The organization of behavior. Wiley, Hoboken Hebb DO (1949) The organization of behavior. Wiley, Hoboken
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef
go back to reference Hopfield JJ (1988) Neural networks and physical systems with emergent collective computational abilities. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp 457–464 Hopfield JJ (1988) Neural networks and physical systems with emergent collective computational abilities. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp 457–464
go back to reference Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRef
go back to reference Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J Physiol Pathol Gen 9:620–635 Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J Physiol Pathol Gen 9:620–635
go back to reference Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671CrossRef Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671CrossRef
go back to reference Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56(5–6):345–353CrossRef Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56(5–6):345–353CrossRef
go back to reference McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetCrossRef McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetCrossRef
go back to reference Paugam-Moisy H, Bohte S (2012) Computing with spiking neuron networks. Springer, Berlin, pp 335–376 Paugam-Moisy H, Bohte S (2012) Computing with spiking neuron networks. Springer, Berlin, pp 335–376
go back to reference Recce M (1999) Encoding information in neuronal activity. In: Maass W, Bishop CM (eds) Pulsed neural networks. MIT Press, Cambridge, pp 111–131 Recce M (1999) Encoding information in neuronal activity. In: Maass W, Bishop CM (eds) Pulsed neural networks. MIT Press, Cambridge, pp 111–131
go back to reference Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44(4):378–392MathSciNetCrossRef Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44(4):378–392MathSciNetCrossRef
go back to reference Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp 696–699 Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp 696–699
go back to reference Sjostrom J, Gerstner W (2010) Spike-timing dependent plasticity. Scholarpedia 5(2):1362CrossRef Sjostrom J, Gerstner W (2010) Spike-timing dependent plasticity. Scholarpedia 5(2):1362CrossRef
Metadata
Title
Spiking neural networks modelled as timed automata: with parameter learning
Authors
Elisabetta De Maria
Cinzia Di Giusto
Laetitia Laversa
Publication date
17-01-2019
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 1/2020
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-019-09727-9

Other articles of this Issue 1/2020

Natural Computing 1/2020 Go to the issue

EditorialNotes

Preface

Premium Partner