Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 3/2022

01-03-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Spin Currents and Nonlinear Dynamics of Vortex Spin Torque Nano-Oscillators

Authors: K. A. Zvezdin, E. G. Ekomasov

Published in: Physics of Metals and Metallography | Issue 3/2022

Login to get access
share
SHARE

Abstract

Vortex spin torque nano-oscillators (STNOs) are multilayer spin-valve magnetic nanopillars, in which the magnetic layers (one or both) contain a magnetic vortex, the dynamics of which provides microwave radiation. In vortex STNOs, it was possible to achieve a high microwave signal power (on the order of 1 μW) and a relatively narrow linewidth (several hundreds of kHz). To further increase the power and improve the spectral characteristics of vortex STNOs, the collective dynamics and synchronization conditions in the ensembles of such nanostructures are studied. The subject of this review is the latest achievements in the field of physics and technology of vortex STNOs.
Literature
1.
go back to reference J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996). CrossRef J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996). CrossRef
2.
go back to reference L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Phys. Rev. B 54, 9353 (1996). CrossRef L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Phys. Rev. B 54, 9353 (1996). CrossRef
3.
go back to reference M. Tsoi, A. G. M. Jansen, J. Bass, W, Chiang, M. Seck, V. Tsoi, and P. Wyder, “Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80, 4281 (1998). CrossRef M. Tsoi, A. G. M. Jansen, J. Bass, W, Chiang, M. Seck, V. Tsoi, and P. Wyder, “Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80, 4281 (1998). CrossRef
4.
go back to reference E. B. Myers, D, Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867 (1999). CrossRef E. B. Myers, D, Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867 (1999). CrossRef
5.
go back to reference A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D, Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett. 84, 3149 (2000). CrossRef A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D, Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett. 84, 3149 (2000). CrossRef
6.
go back to reference A. K. Zvezdin, A. V. Khval’kovskii, and K. A. Zvezdin, “The generalized Landau-Lifshitz equation and spin transfer processes in magnetic nanostructures,” Phys. Usp. 51, 412–417 (2008). CrossRef A. K. Zvezdin, A. V. Khval’kovskii, and K. A. Zvezdin, “The generalized Landau-Lifshitz equation and spin transfer processes in magnetic nanostructures,” Phys. Usp. 51, 412–417 (2008). CrossRef
7.
go back to reference S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294, 1488 (2001). CrossRef S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294, 1488 (2001). CrossRef
8.
go back to reference A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, “Basic principles of STT-MRAM cell operation in memory arrays,” J. Phys. D: Appl. Phys. 46, 074001 (2013). CrossRef A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, “Basic principles of STT-MRAM cell operation in memory arrays,” J. Phys. D: Appl. Phys. 46, 074001 (2013). CrossRef
9.
go back to reference D. A. Allwood, G. Xiong, C, Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science 309, 1688 (2005). CrossRef D. A. Allwood, G. Xiong, C, Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science 309, 1688 (2005). CrossRef
10.
go back to reference A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A. V. Khvalkovskiy, K. Zvezdin, K. A. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities,” Nat. Phys. 7, 626–630 (2011). CrossRef A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A. V. Khvalkovskiy, K. Zvezdin, K. A. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities,” Nat. Phys. 7, 626–630 (2011). CrossRef
11.
go back to reference S. I. Kiselev, J, Sankey, I. N. Krivorotov, N, Emley, R. J. Schoelkopf, R. A. Buhrman, and D, Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature 425, 380–383 (2003). CrossRef S. I. Kiselev, J, Sankey, I. N. Krivorotov, N, Emley, R. J. Schoelkopf, R. A. Buhrman, and D, Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature 425, 380–383 (2003). CrossRef
12.
go back to reference A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, “Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions,” Nat. Commun. 1, 8 (2010). CrossRef A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, “Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions,” Nat. Commun. 1, 8 (2010). CrossRef
13.
go back to reference W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-current induced dynamics in Co 90Fe 10/Ni 80Fe 20 point contacts,” Phys. Rev. Lett. 92, 027201 (2004). CrossRef W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-current induced dynamics in Co 90Fe 10/Ni 80Fe 20 point contacts,” Phys. Rev. Lett. 92, 027201 (2004). CrossRef
14.
go back to reference I. N. Krivorotov, N, Emley, J, Sankey, S. I. Kiselev, D. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science 307, 228 (2005). CrossRef I. N. Krivorotov, N, Emley, J, Sankey, S. I. Kiselev, D. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science 307, 228 (2005). CrossRef
15.
go back to reference A. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360 (2016). CrossRef A. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360 (2016). CrossRef
16.
go back to reference P. Skirdkov, A. Popkov, and K. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018). CrossRef P. Skirdkov, A. Popkov, and K. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018). CrossRef
17.
go back to reference S. Bohlens, B. Kruger, A. Drews, M. Bolte, et al., “Current controlled random-access memory based on magnetic vortex handedness,” Appl. Phys. Lett. 93, 142508 (2008). CrossRef S. Bohlens, B. Kruger, A. Drews, M. Bolte, et al., “Current controlled random-access memory based on magnetic vortex handedness,” Appl. Phys. Lett. 93, 142508 (2008). CrossRef
18.
go back to reference K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, et al., “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011). CrossRef K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, et al., “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011). CrossRef
19.
go back to reference J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020). CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020). CrossRef
20.
go back to reference L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zho, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019). CrossRef L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zho, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019). CrossRef
21.
go back to reference K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui, “Perspective: Magnetic skyrmions-Overview of recent progress in an active research field,” J. Appl. Phys. 124, 240901 (2018). CrossRef K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui, “Perspective: Magnetic skyrmions-Overview of recent progress in an active research field,” J. Appl. Phys. 124, 240901 (2018). CrossRef
22.
go back to reference S. Wang, A. Qaiumzadeh, and A. Brataas, “Current-driven dynamics of magnetic hopfions,” Phys. Rev. Lett. 123, 147203 (2019). CrossRef S. Wang, A. Qaiumzadeh, and A. Brataas, “Current-driven dynamics of magnetic hopfions,” Phys. Rev. Lett. 123, 147203 (2019). CrossRef
23.
go back to reference F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, et al., “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, 451–455 (2018). CrossRef F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, et al., “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, 451–455 (2018). CrossRef
24.
go back to reference Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, “Fast and controllable switching the circulation and polarity of magnetic vortices,” J. Met., Mater. Miner. 370, 68–75 (2014). Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, “Fast and controllable switching the circulation and polarity of magnetic vortices,” J. Met., Mater. Miner. 370, 68–75 (2014).
25.
go back to reference R.-C. Peng, J.-M. Hub, T. Yang, X. Cheng, J.-J. Wang, H.-B. Huang, L.-Q. Chen, and C.-W. Nan, “Switching the chirality of a magnetic vortex deterministically with an electric field,” Mater. Res. Lett. 6, No. 12, 669–675 (2018). CrossRef R.-C. Peng, J.-M. Hub, T. Yang, X. Cheng, J.-J. Wang, H.-B. Huang, L.-Q. Chen, and C.-W. Nan, “Switching the chirality of a magnetic vortex deterministically with an electric field,” Mater. Res. Lett. 6, No. 12, 669–675 (2018). CrossRef
26.
go back to reference V. A. Orlov, R. Yu. Rudenko, A. V. Kobyakov, A. V. Luk’yanenko, P. D. Kim, V. S. Prokopenko, and I. N. Orlova, “Magnetization dynamics in two-dimensional arrays of square microelements,” J. Exp. Theor. Phys. 126, No. 4, 523–534 (2018). CrossRef V. A. Orlov, R. Yu. Rudenko, A. V. Kobyakov, A. V. Luk’yanenko, P. D. Kim, V. S. Prokopenko, and I. N. Orlova, “Magnetization dynamics in two-dimensional arrays of square microelements,” J. Exp. Theor. Phys. 126, No. 4, 523–534 (2018). CrossRef
27.
go back to reference T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, No. 5481, 930–932 (2000). CrossRef T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, No. 5481, 930–932 (2000). CrossRef
28.
go back to reference J. Wu, D. Carlton, J. Park, Y. Meng, et al., “Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs,” Nat. Phys. 7, 303–306 (2011). CrossRef J. Wu, D. Carlton, J. Park, Y. Meng, et al., “Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs,” Nat. Phys. 7, 303–306 (2011). CrossRef
29.
go back to reference V. L. Mironov, B. A. Gribkov, A. A. Fraerman, S. A. Gusev, S. N. Vdovichev, I. R. Karetnikova, I. M. Nefedov, and I. A. Shereshevsky, “MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles,” J. Magn. Magn. Mater. 312, 153 (2007). CrossRef V. L. Mironov, B. A. Gribkov, A. A. Fraerman, S. A. Gusev, S. N. Vdovichev, I. R. Karetnikova, I. M. Nefedov, and I. A. Shereshevsky, “MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles,” J. Magn. Magn. Mater. 312, 153 (2007). CrossRef
30.
go back to reference K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in cylindrical ferromagnetic dots,” Phys. Rev. Lett. 96, 067205 (2006). CrossRef K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in cylindrical ferromagnetic dots,” Phys. Rev. Lett. 96, 067205 (2006). CrossRef
31.
go back to reference S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1032) [in Russian]. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1032) [in Russian].
32.
go back to reference L. G. Korzunin and I. M. Izmozherov, “Numerical simulation of the influence of inhomogeneities on the properties of magnetization nanostructures,” Phys. Met. Metallogr. 122, 183 (2021). CrossRef L. G. Korzunin and I. M. Izmozherov, “Numerical simulation of the influence of inhomogeneities on the properties of magnetization nanostructures,” Phys. Met. Metallogr. 122, 183 (2021). CrossRef
33.
go back to reference N. A. Usov and S. E. Peschany, “Magnetization curling in a fine cylindrical particle,” J. Magn. Magn. Mater. 118, 290–294 (1993). CrossRef N. A. Usov and S. E. Peschany, “Magnetization curling in a fine cylindrical particle,” J. Magn. Magn. Mater. 118, 290–294 (1993). CrossRef
34.
go back to reference R. P. Cowburn and M. E. Welland, “Phase transitions in planar magnetic nanostructures,” Appl. Phys. Lett. 72, 2041 (1998). CrossRef R. P. Cowburn and M. E. Welland, “Phase transitions in planar magnetic nanostructures,” Appl. Phys. Lett. 72, 2041 (1998). CrossRef
35.
go back to reference K. Y. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, 2745–2760 (2008). CrossRef K. Y. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, 2745–2760 (2008). CrossRef
36.
go back to reference K. Metlov and K. Guslienko, “Stability of magnetic vortex in soft magnetic nano-sized circular cylinder,” J. Magn. Magn. Mater. 242– 245, No. 2, 1015–1017 (2002). CrossRef K. Metlov and K. Guslienko, “Stability of magnetic vortex in soft magnetic nano-sized circular cylinder,” J. Magn. Magn. Mater. 242245, No. 2, 1015–1017 (2002). CrossRef
37.
go back to reference K. Guslienko and K. L. Metlov, “Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field,” Phys. Rev. B 63, 100403 (2001). CrossRef K. Guslienko and K. L. Metlov, “Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field,” Phys. Rev. B 63, 100403 (2001). CrossRef
38.
go back to reference K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, “Field evolution of magnetic vortex state in ferromagnetic disks,” Appl. Phys. Lett. 78, 3848–3850 (2001). CrossRef K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, “Field evolution of magnetic vortex state in ferromagnetic disks,” Appl. Phys. Lett. 78, 3848–3850 (2001). CrossRef
39.
go back to reference C. Chappert, A. Fert A., and A. F. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813–823 (2007). CrossRef C. Chappert, A. Fert A., and A. F. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813–823 (2007). CrossRef
40.
go back to reference A. A. Thiele, “Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains,” J. Appl. Phys. 45, No. 1, 377–393 (1974). CrossRef A. A. Thiele, “Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains,” J. Appl. Phys. 45, No. 1, 377–393 (1974). CrossRef
41.
go back to reference D. L. Huber, “Dynamics of spin vortices in two dimensional planar magnets,” Phys. Rev. B 26, No. 7, 3758–3765 (1982). CrossRef D. L. Huber, “Dynamics of spin vortices in two dimensional planar magnets,” Phys. Rev. B 26, No. 7, 3758–3765 (1982). CrossRef
42.
go back to reference D. L. Huber, “Equation of motion of a spin vortex in a two-dimensional planar magnet,” J. Appl. Phys. 53, No. 3, 1899–1900 (1982). CrossRef D. L. Huber, “Equation of motion of a spin vortex in a two-dimensional planar magnet,” J. Appl. Phys. 53, No. 3, 1899–1900 (1982). CrossRef
43.
go back to reference F. G. Mertens and A. R. Bishop, Dynamics of Vortices in Two-Dimensional Magnets, Nonlinear Science at the Dawn of the 21th Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A, Scott (Springer, Berlin, 2000), pp. 137–170. F. G. Mertens and A. R. Bishop, Dynamics of Vortices in Two-Dimensional Magnets, Nonlinear Science at the Dawn of the 21th Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A, Scott (Springer, Berlin, 2000), pp. 137–170.
44.
go back to reference D. D. Sheka, “Field momentum and gyroscopic dynamics of classical systems with topological defects,” J. Phys. A: Math. Gen. 39, No. 50, 15477–15489 (2006). CrossRef D. D. Sheka, “Field momentum and gyroscopic dynamics of classical systems with topological defects,” J. Phys. A: Math. Gen. 39, No. 50, 15477–15489 (2006). CrossRef
45.
go back to reference A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, “Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, 140401 (2009). CrossRef A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, “Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, 140401 (2009). CrossRef
46.
go back to reference Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, 8397 (2010). Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, 8397 (2010).
47.
go back to reference B. A. Ivanov and E. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, 247208 (2007). CrossRef B. A. Ivanov and E. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, 247208 (2007). CrossRef
48.
go back to reference N. A. Usov and S. E. Peschanyi, “Vortex distribution of magnetization in a thin ferromagnetic cylinder,” Phys. Met. Metallogr. 78, No. 6, 13–24 (1994). N. A. Usov and S. E. Peschanyi, “Vortex distribution of magnetization in a thin ferromagnetic cylinder,” Phys. Met. Metallogr. 78, No. 6, 13–24 (1994).
52.
53.
go back to reference https://deparkes.co.uk/2014/05/30/list-micromagnetic- simulation-software/. https://deparkes.co.uk/2014/05/30/list-micromagnetic- simulation-software/.
54.
go back to reference D. V. Berkov and J. Miltat, “Spin-torque driven magnetization dynamics: Micromagnetic modeling,” J. Magn. Magn. Mater. 320, 1238–1259 (2008). CrossRef D. V. Berkov and J. Miltat, “Spin-torque driven magnetization dynamics: Micromagnetic modeling,” J. Magn. Magn. Mater. 320, 1238–1259 (2008). CrossRef
55.
go back to reference J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 180901 (2019). CrossRef J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 180901 (2019). CrossRef
56.
go back to reference B. A. Ivanov, G. G. Avanesyan, A. V. Khvalkovskiy, N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin, “Non-newtonian dynamics of the fast motion of a magnetic vortex,” J. Exp. Theor. Phys. Lett. 91, No. 4, 178 (2010). CrossRef B. A. Ivanov, G. G. Avanesyan, A. V. Khvalkovskiy, N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin, “Non-newtonian dynamics of the fast motion of a magnetic vortex,” J. Exp. Theor. Phys. Lett. 91, No. 4, 178 (2010). CrossRef
57.
go back to reference S. S. Cherepov, B, Koop, V. Korenivski, D, Worledge, A. Yu. Galkin, S. R. Khymyn, and B. A. Ivanov, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012). CrossRef S. S. Cherepov, B, Koop, V. Korenivski, D, Worledge, A. Yu. Galkin, S. R. Khymyn, and B. A. Ivanov, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012). CrossRef
58.
go back to reference P. D. Kim, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, V. Ya. Prints, R. Yu. Rudenko, and T. V. Rudenko, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 29–36 (2015). CrossRef P. D. Kim, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, V. Ya. Prints, R. Yu. Rudenko, and T. V. Rudenko, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 29–36 (2015). CrossRef
59.
go back to reference K. Y. Guslienko, G. N. Kakazei, J. Ding, X. M. Liu, and A. O. Adeyeye, “Giant moving vortex mass in thick magnetic nanodots,” Sci. Rep. 5,13881 (2015). CrossRef K. Y. Guslienko, G. N. Kakazei, J. Ding, X. M. Liu, and A. O. Adeyeye, “Giant moving vortex mass in thick magnetic nanodots,” Sci. Rep. 5,13881 (2015). CrossRef
60.
go back to reference M. Goiriena-Goikoetxea, K. Y. Guslienko, I. Rouco, M. Orue, E. Berganza, M. Jaafar, A. Asenjo, M. L. Fernández-Gubieda, L. Fernández Barquín, and A. García-Arriba, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017). CrossRef M. Goiriena-Goikoetxea, K. Y. Guslienko, I. Rouco, M. Orue, E. Berganza, M. Jaafar, A. Asenjo, M. L. Fernández-Gubieda, L. Fernández Barquín, and A. García-Arriba, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017). CrossRef
61.
go back to reference A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, “Nonlinear collective excitations in an easy-plane magnet,” Zh. Eksp. Teor. Fiz. 84, No. 1, 148–160 (1983). A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, “Nonlinear collective excitations in an easy-plane magnet,” Zh. Eksp. Teor. Fiz. 84, No. 1, 148–160 (1983).
62.
go back to reference A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983), p. 192 [in Russian]. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983), p. 192 [in Russian].
63.
go back to reference B. A. Ivanov and D. D. Sheka, “Vortices in the cone phase of a classical quasi-two-dimensional ferromagnet,” Fiz. Nizk. Temp. 21, No. 10, 1148–1156 (1995). B. A. Ivanov and D. D. Sheka, “Vortices in the cone phase of a classical quasi-two-dimensional ferromagnet,” Fiz. Nizk. Temp. 21, No. 10, 1148–1156 (1995).
64.
go back to reference B. A. Ivanov and G. M. Wysin, “Magnon modes for a circular two–dimensional easy–plane ferromagnet in the cone state,” Phys. Rev. B 65, No. 13, 134434 (2002). CrossRef B. A. Ivanov and G. M. Wysin, “Magnon modes for a circular two–dimensional easy–plane ferromagnet in the cone state,” Phys. Rev. B 65, No. 13, 134434 (2002). CrossRef
65.
go back to reference V. P. Kravchuk and D. D. Sheka, “Thin ferromagnetic nanodisk in transverse magnetic field,” Phys. Solid State 49, No. 10, 1923–1931 (2007). CrossRef V. P. Kravchuk and D. D. Sheka, “Thin ferromagnetic nanodisk in transverse magnetic field,” Phys. Solid State 49, No. 10, 1923–1931 (2007). CrossRef
66.
go back to reference A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. R. Grollie, V. Cros, and A. Fert, “Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime,” Phys. Rev. B 86, 014402 (2012). CrossRef A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. R. Grollie, V. Cros, and A. Fert, “Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime,” Phys. Rev. B 86, 014402 (2012). CrossRef
67.
go back to reference G. de Loubens, B. Pigeau, F. Lochner, F. Boust, K. Y. Guslienko, H. Hurdequint, L. W. Molenkamp, G. Schmidt, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic, and O. Klein, “Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk,” Phys. Rev. Lett. 102, 177602 (2009). CrossRef G. de Loubens, B. Pigeau, F. Lochner, F. Boust, K. Y. Guslienko, H. Hurdequint, L. W. Molenkamp, G. Schmidt, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic, and O. Klein, “Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk,” Phys. Rev. Lett. 102, 177602 (2009). CrossRef
68.
go back to reference K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in a ferromagnetic dot,” Phys. Rev. Lett. 96, 067205 (2006). CrossRef K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in a ferromagnetic dot,” Phys. Rev. Lett. 96, 067205 (2006). CrossRef
69.
go back to reference P. N. Skirdkov, A. F. Popkov, and K. A. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018). CrossRef P. N. Skirdkov, A. F. Popkov, and K. A. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018). CrossRef
70.
go back to reference P. N. Skirdkov and K. A. Zvezdin, “Spin-torque diodes: From fundamental research to applications,” Ann. Phys. 532, 12 (2020). CrossRef P. N. Skirdkov and K. A. Zvezdin, “Spin-torque diodes: From fundamental research to applications,” Ann. Phys. 532, 12 (2020). CrossRef
71.
go back to reference P. N. Skirdkov, A. D. Belanovsky, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, J. Grollier, and V. Cros, “Influence of shape imperfection on dynamics of vortex spin-torque nano-oscillator,” SPIN 02, 01, 1250005 (2012). CrossRef P. N. Skirdkov, A. D. Belanovsky, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, J. Grollier, and V. Cros, “Influence of shape imperfection on dynamics of vortex spin-torque nano-oscillator,” SPIN 02, 01, 1250005 (2012). CrossRef
72.
go back to reference V. A. Orlov, G. S. Patrin, and I. N. Orlova, “Interaction of a magnetic vortex with magnetic anisotropy nonuniformity,” J. Exp. Theor. Phys. 131, 589–599 (2020). CrossRef V. A. Orlov, G. S. Patrin, and I. N. Orlova, “Interaction of a magnetic vortex with magnetic anisotropy nonuniformity,” J. Exp. Theor. Phys. 131, 589–599 (2020). CrossRef
73.
go back to reference M. Kuepferling, S. Zullino, A. Sola, B. Van de Wiele, G. Durin, M. Pasquale, K. Rott, G. Reiss, and G. Bertotti, “Vortex dynamics in Co–Fe–B magnetic tunnel junctions in presence of defects,” J. Appl. Phys. 117, 17E107 (2015). M. Kuepferling, S. Zullino, A. Sola, B. Van de Wiele, G. Durin, M. Pasquale, K. Rott, G. Reiss, and G. Bertotti, “Vortex dynamics in Co–Fe–B magnetic tunnel junctions in presence of defects,” J. Appl. Phys. 117, 17E107 (2015).
74.
go back to reference T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, “MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field,” J. Magn. Magn. Mater. 240, 1–6 (2002). CrossRef T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, “MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field,” J. Magn. Magn. Mater. 240, 1–6 (2002). CrossRef
75.
go back to reference A. Thiaville, J. M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, “Micromagnetic study of Bloch-point-mediated vortex core reversal,” Phys. Rev. B 67, 094410 (2003). CrossRef A. Thiaville, J. M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, “Micromagnetic study of Bloch-point-mediated vortex core reversal,” Phys. Rev. B 67, 094410 (2003). CrossRef
76.
go back to reference R. Wang and X. Dong, “Sub-nanosecond switching of vortex cores using a resonant perpendicular magnetic field,” Appl. Phys. Lett. 100, 082402 (2012) CrossRef R. Wang and X. Dong, “Sub-nanosecond switching of vortex cores using a resonant perpendicular magnetic field,” Appl. Phys. Lett. 100, 082402 (2012) CrossRef
77.
go back to reference M. -W. Yoo, J. Lee, and S-K. Kim, “Radial-spin-wave-mode-assisted vortex-core magnetization reversals,” Appl. Phys. Lett. 100, 172413 (2012). CrossRef M. -W. Yoo, J. Lee, and S-K. Kim, “Radial-spin-wave-mode-assisted vortex-core magnetization reversals,” Appl. Phys. Lett. 100, 172413 (2012). CrossRef
78.
go back to reference D. J. Keavney, X. M. Cheng, and K. S. Buchanan, “Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field,” Appl. Phys. Lett. 94, 172506 (2009). CrossRef D. J. Keavney, X. M. Cheng, and K. S. Buchanan, “Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field,” Appl. Phys. Lett. 94, 172506 (2009). CrossRef
79.
go back to reference R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, “Ultrafast nanomagnetic toggle switching of vortex cores,” Phys Rev Lett. 98, 117201 (2007). CrossRef R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, “Ultrafast nanomagnetic toggle switching of vortex cores,” Phys Rev Lett. 98, 117201 (2007). CrossRef
80.
go back to reference J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, “Vortex polarity switching by a spin-polarized current,” Phys. Rev. Lett. 98, 056604 (2007). CrossRef J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, “Vortex polarity switching by a spin-polarized current,” Phys. Rev. Lett. 98, 056604 (2007). CrossRef
81.
go back to reference K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, et al., “Electrical switching of the vortex core in a magnetic disk,” Nat. Mater. 6, 270–273 (2007). CrossRef K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, et al., “Electrical switching of the vortex core in a magnetic disk,” Nat. Mater. 6, 270–273 (2007). CrossRef
82.
go back to reference D. D. Sheka, Y. Gaididei, and F. G. Mertens, “Current induced switching of vortex polarity in magnetic nanodisks,” Appl. Phys. Lett. 91, 082509 (2007). CrossRef D. D. Sheka, Y. Gaididei, and F. G. Mertens, “Current induced switching of vortex polarity in magnetic nanodisks,” Appl. Phys. Lett. 91, 082509 (2007). CrossRef
83.
go back to reference W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009). CrossRef W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009). CrossRef
84.
go back to reference A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, and K. Y. Guslienko, “Critical velocity for the vortex core reversal in perpendicular bias magnetic field,” Appl. Phys. Lett. 96, 022504 (2010). CrossRef A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, and K. Y. Guslienko, “Critical velocity for the vortex core reversal in perpendicular bias magnetic field,” Appl. Phys. Lett. 96, 022504 (2010). CrossRef
85.
go back to reference Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, “Current-induced magnetic vortex core switching in a Permalloy nanodisk,” Appl. Phys. Lett. 91, 112501 (2007). CrossRef Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, “Current-induced magnetic vortex core switching in a Permalloy nanodisk,” Appl. Phys. Lett. 91, 112501 (2007). CrossRef
86.
go back to reference V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, et al., “Dynamic switching of the spin circulation in tapered magnetic nanodisks,” Nat. Nanotechnol. 8, 341–346 (2013). CrossRef V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, et al., “Dynamic switching of the spin circulation in tapered magnetic nanodisks,” Nat. Nanotechnol. 8, 341–346 (2013). CrossRef
87.
go back to reference N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, Sh. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013). CrossRef N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, Sh. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013). CrossRef
88.
go back to reference K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, “Current-induced switching of magnetic vortex core in ferromagnetic elliptical disks,” Appl. Phys. Lett. 96, 192508 (2010). CrossRef K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, “Current-induced switching of magnetic vortex core in ferromagnetic elliptical disks,” Appl. Phys. Lett. 96, 192508 (2010). CrossRef
89.
go back to reference S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, “Electric-current-driven vortex-core reversal in soft magnetic nanodots,” Appl. Phys. Lett. 91, 082506 (2007). CrossRef S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, “Electric-current-driven vortex-core reversal in soft magnetic nanodots,” Appl. Phys. Lett. 91, 082506 (2007). CrossRef
90.
go back to reference K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, and T. Ono, “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011). CrossRef K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, and T. Ono, “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011). CrossRef
91.
go back to reference K. Yu. Guslienko, K. S. Buchanan, S. D. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” Appl. Phys. Lett. 86, 223112 (2005). CrossRef K. Yu. Guslienko, K. S. Buchanan, S. D. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” Appl. Phys. Lett. 86, 223112 (2005). CrossRef
92.
go back to reference N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, No. 6, 062501 (2011). CrossRef N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, No. 6, 062501 (2011). CrossRef
93.
go back to reference S. S. Cherepov, B. C. Koop, A. Yu. Galkin, R. S. Khymyn, B. A. Ivanov, D. C. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012). CrossRef S. S. Cherepov, B. C. Koop, A. Yu. Galkin, R. S. Khymyn, B. A. Ivanov, D. C. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012). CrossRef
94.
go back to reference V. Sluka, A. Kakay, A. M. Deac, D. E. Burgler, C. M. Schneider, and R. Hertel, “Spin-torque induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices,” Nat. Commun. 6, 6409 (2015). CrossRef V. Sluka, A. Kakay, A. M. Deac, D. E. Burgler, C. M. Schneider, and R. Hertel, “Spin-torque induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices,” Nat. Commun. 6, 6409 (2015). CrossRef
95.
go back to reference N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, 4300206 (2015). CrossRef N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, 4300206 (2015). CrossRef
96.
go back to reference A. Hamadeh, N. Locatelli, V. Naletov, R. Lebrun, G. Loubens, J. Grollier, O. Klein, and V. Cros, “Origin of spectral purity and tuning sensitivity in a spin transfer vortex nano-oscillator,” Phys. Rev. Lett. 11, No. 25, 257201 (2014). CrossRef A. Hamadeh, N. Locatelli, V. Naletov, R. Lebrun, G. Loubens, J. Grollier, O. Klein, and V. Cros, “Origin of spectral purity and tuning sensitivity in a spin transfer vortex nano-oscillator,” Phys. Rev. Lett. 11, No. 25, 257201 (2014). CrossRef
97.
go back to reference A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017). CrossRef A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017). CrossRef
98.
go back to reference E. G. Ekomasov, S. V. Stepanov, M. I. Fakhretdinov, G. I. Antonov, A. E. Ekomasov, and K. A. Zvezdin, “Coupled dynamics of magnetic vortices in a three-layer thin conducting permalloy nanodisk,” Chelyab. Fiz.-Matem. Zhurn. 5, No. 2, 161–17 (2020). E. G. Ekomasov, S. V. Stepanov, M. I. Fakhretdinov, G. I. Antonov, A. E. Ekomasov, and K. A. Zvezdin, “Coupled dynamics of magnetic vortices in a three-layer thin conducting permalloy nanodisk,” Chelyab. Fiz.-Matem. Zhurn. 5, No. 2, 161–17 (2020).
99.
go back to reference S. Stepanov, A. Ekomasov, K. Zvezdin, and E. Ekomasov, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018). CrossRef S. Stepanov, A. Ekomasov, K. Zvezdin, and E. Ekomasov, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018). CrossRef
100.
go back to reference A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Magn. Magn. Mater. 471, 513–520 (2019). CrossRef A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Magn. Magn. Mater. 471, 513–520 (2019). CrossRef
101.
go back to reference E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, and G. I. Antonov, “The effect of the spin-polarized current on the dynamics and structural changes of magnetic vortices in a large-diameter three-layer conducting nanocylinder,” Phys. Met. Metallogr. 122, No. 3, 197–204 (2021). CrossRef E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, and G. I. Antonov, “The effect of the spin-polarized current on the dynamics and structural changes of magnetic vortices in a large-diameter three-layer conducting nanocylinder,” Phys. Met. Metallogr. 122, No. 3, 197–204 (2021). CrossRef
102.
go back to reference F. A. Araujo, H. Kubota, K. Yakushiji, A. Fukushima, and S. Yuasa, “Nonlinear behavior and mode coupling in spin-transfer nano-oscillators,” Phys. Rev. Appl. 2, 061001 (2014). CrossRef F. A. Araujo, H. Kubota, K. Yakushiji, A. Fukushima, and S. Yuasa, “Nonlinear behavior and mode coupling in spin-transfer nano-oscillators,” Phys. Rev. Appl. 2, 061001 (2014). CrossRef
103.
go back to reference L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zhou, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019). CrossRef L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zhou, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019). CrossRef
104.
go back to reference M. E. Stebliy, A. V. Ognev, A. S. Samardak, A. G. Kolesnikov, L. A. Chebotkevich, and X. Han, “High-frequency switching of magnetic bistability in an asymmetric double disk nanostructure,” Appl. Phys. Lett. 104, 112405 (2014). CrossRef M. E. Stebliy, A. V. Ognev, A. S. Samardak, A. G. Kolesnikov, L. A. Chebotkevich, and X. Han, “High-frequency switching of magnetic bistability in an asymmetric double disk nanostructure,” Appl. Phys. Lett. 104, 112405 (2014). CrossRef
105.
go back to reference A. V. Bondarenko, E. Holmgren, B. C. Koop, T. Descamps, B. A. Ivanov, and V. Korenivski, “Stochastic dynamics of strongly-bound magnetic vortex pairs,” AIP Adv. 7, 056007 (2017). CrossRef A. V. Bondarenko, E. Holmgren, B. C. Koop, T. Descamps, B. A. Ivanov, and V. Korenivski, “Stochastic dynamics of strongly-bound magnetic vortex pairs,” AIP Adv. 7, 056007 (2017). CrossRef
106.
go back to reference E. Holmgren, A. Bondarenko, B. A. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, 094406 (2018). CrossRef E. Holmgren, A. Bondarenko, B. A. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, 094406 (2018). CrossRef
107.
go back to reference E. Holmgren, A. Bondarenko, M. Persson, B. A. Ivanov, and V. Korenivski, “Transient dynamics of strongly coupled spin vortex pairs: Effects of anharmonicity and resonant excitation on inertial switching,” Appl. Phys. Lett. 112, 192405 (2018). CrossRef E. Holmgren, A. Bondarenko, M. Persson, B. A. Ivanov, and V. Korenivski, “Transient dynamics of strongly coupled spin vortex pairs: Effects of anharmonicity and resonant excitation on inertial switching,” Appl. Phys. Lett. 112, 192405 (2018). CrossRef
108.
go back to reference W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009). CrossRef W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009). CrossRef
109.
go back to reference K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, “Edge-soliton-mediated vortex-core reversal dynamics,” Phys. Rev. Lett. 106, 147201 (2011). CrossRef K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, “Edge-soliton-mediated vortex-core reversal dynamics,” Phys. Rev. Lett. 106, 147201 (2011). CrossRef
110.
go back to reference A. S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360–364 (2016). CrossRef A. S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360–364 (2016). CrossRef
111.
go back to reference A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios of polarization switching of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Cer. Fiz. 77, No. 10, 1490–1492 (2013). A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios of polarization switching of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Cer. Fiz. 77, No. 10, 1490–1492 (2013).
112.
go back to reference A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of vortex core switching in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, 46 (2016). A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of vortex core switching in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, 46 (2016).
113.
go back to reference A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409(R) (2012). A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409(R) (2012).
114.
go back to reference N. Locatelli, A. Hamadeh, AraujoF. Abreu, A. D. Belanovsky, P. N. Skirdkov, R. Lebrun, V. V. Naletov, K. A. Zvezdin, M. Munoz, J. Grollier, O. Klein, V. Cros, and G. de Loubens, “Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators,” Sci. Rep. 5, 17039 (2015). CrossRef N. Locatelli, A. Hamadeh, AraujoF. Abreu, A. D. Belanovsky, P. N. Skirdkov, R. Lebrun, V. V. Naletov, K. A. Zvezdin, M. Munoz, J. Grollier, O. Klein, V. Cros, and G. de Loubens, “Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators,” Sci. Rep. 5, 17039 (2015). CrossRef
115.
go back to reference A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013). CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013). CrossRef
116.
go back to reference A. F. Abreu, A. D. Belanovsky, P. N. Skirdkov, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, R. Lebrun, J. Grollier, V. Cros, G. de Loubens, and O. Klein, “Optimizing magnetodipolar interactions for synchronizing vortex-based spin-torque nano-oscillators,” Phys. Rev. B 92, 045419 (2015). CrossRef A. F. Abreu, A. D. Belanovsky, P. N. Skirdkov, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, R. Lebrun, J. Grollier, V. Cros, G. de Loubens, and O. Klein, “Optimizing magnetodipolar interactions for synchronizing vortex-based spin-torque nano-oscillators,” Phys. Rev. B 92, 045419 (2015). CrossRef
117.
go back to reference J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents,” Phys. Rev. B 73, 060409 (2006). CrossRef J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents,” Phys. Rev. B 73, 060409 (2006). CrossRef
118.
go back to reference V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators,” Appl. Phys. Lett. 95, 262505 (2009). CrossRef V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators,” Appl. Phys. Lett. 95, 262505 (2009). CrossRef
119.
go back to reference B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: analytical study, Appl. Phys. Lett. 92, 232504 (2008). CrossRef B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: analytical study, Appl. Phys. Lett. 92, 232504 (2008). CrossRef
120.
go back to reference A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, “Phase-locking of magnetic vortices mediated by antivortices,” Nature Nano. 4, 528 (2009). CrossRef A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, “Phase-locking of magnetic vortices mediated by antivortices,” Nature Nano. 4, 528 (2009). CrossRef
121.
go back to reference A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409 (2012). CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409 (2012). CrossRef
122.
go back to reference A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013). CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013). CrossRef
123.
go back to reference Y. Zhou and J. Akerman, “Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators,” Appl. Phys. Lett. 94, 112503 (2009). CrossRef Y. Zhou and J. Akerman, “Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators,” Appl. Phys. Lett. 94, 112503 (2009). CrossRef
124.
go back to reference A. N. Slavin and V. S. Tiberkevich, “Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts,” Phys. Rev. B 72, 092407 (2005). CrossRef A. N. Slavin and V. S. Tiberkevich, “Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts,” Phys. Rev. B 72, 092407 (2005). CrossRef
125.
go back to reference A. N. Slavin and V. S. Tiberkevich, “Theory of mutual phase locking of spintorque nanosized oscillators,” Phys. Rev. B 74, 104401 (2006) CrossRef A. N. Slavin and V. S. Tiberkevich, “Theory of mutual phase locking of spintorque nanosized oscillators,” Phys. Rev. B 74, 104401 (2006) CrossRef
126.
go back to reference S. Urazhdin, P. Tabor, V. S. Tiberkevich, and A. Slavin, “Fractional synchronization of spin-torque nano-oscillators,” Phys. Rev. Lett. 105, 104101 (2010). CrossRef S. Urazhdin, P. Tabor, V. S. Tiberkevich, and A. Slavin, “Fractional synchronization of spin-torque nano-oscillators,” Phys. Rev. Lett. 105, 104101 (2010). CrossRef
127.
go back to reference S. Kaka, M. Puffall, W. Rippard, T. Silva, S. Russek, and J. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature 437, 389–392 (2005). CrossRef S. Kaka, M. Puffall, W. Rippard, T. Silva, S. Russek, and J. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature 437, 389–392 (2005). CrossRef
128.
go back to reference F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, “Phase-locking in double-point-contact spin-transfer devices,” Nature 437, 393–395 (2005). CrossRef F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, “Phase-locking in double-point-contact spin-transfer devices,” Nature 437, 393–395 (2005). CrossRef
129.
go back to reference A. R. Safin, N. N. Udalov, and M. V. Kapranov, “Mutual phase locking of very nonidentical spin torque nanooscillators via spin wave interaction,” Eur. Phys. J. Appl. Phys. 67, No. 2, 20601 (2014). CrossRef A. R. Safin, N. N. Udalov, and M. V. Kapranov, “Mutual phase locking of very nonidentical spin torque nanooscillators via spin wave interaction,” Eur. Phys. J. Appl. Phys. 67, No. 2, 20601 (2014). CrossRef
130.
go back to reference V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices,” Appl. Phys. Lett. 102, 052403 (2013). CrossRef V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices,” Appl. Phys. Lett. 102, 052403 (2013). CrossRef
131.
go back to reference N. Locatelli, V. V. Naletov, J. Grollier, G. De Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, 062501 (2011). CrossRef N. Locatelli, V. V. Naletov, J. Grollier, G. De Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, 062501 (2011). CrossRef
132.
go back to reference J. Shibata, K. Shigeto, and Y. Otani, “Dynamics of magnetostatically coupled vortices in magnetic nanodisks,” Phys. Rev. B 67, 224404 (2003). CrossRef J. Shibata, K. Shigeto, and Y. Otani, “Dynamics of magnetostatically coupled vortices in magnetic nanodisks,” Phys. Rev. B 67, 224404 (2003). CrossRef
133.
go back to reference A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, “Influence of dipolar interaction on vortex dynamics in arrays of ferromagnetic disks,” Phys. Rev. Lett. 105, 037201 (2010). CrossRef A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, “Influence of dipolar interaction on vortex dynamics in arrays of ferromagnetic disks,” Phys. Rev. Lett. 105, 037201 (2010). CrossRef
134.
go back to reference S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, “Dynamics of coupled vortices in a pair of ferromagnetic disks,” Phys. Rev. Lett. 106, 197203 (2011). CrossRef S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, “Dynamics of coupled vortices in a pair of ferromagnetic disks,” Phys. Rev. Lett. 106, 197203 (2011). CrossRef
135.
go back to reference M. Romera, P. Talatchian, S. Tsunegi, F. Abreu, CrosV. Araujo, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, and J. Grollier, “Vowel recognition with four coupled spin-torque nano-oscillator,” Nature 563, 230 (2018). CrossRef M. Romera, P. Talatchian, S. Tsunegi, F. Abreu, CrosV. Araujo, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, and J. Grollier, “Vowel recognition with four coupled spin-torque nano-oscillator,” Nature 563, 230 (2018). CrossRef
136.
go back to reference J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, et al., “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020). CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, et al., “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020). CrossRef
Metadata
Title
Spin Currents and Nonlinear Dynamics of Vortex Spin Torque Nano-Oscillators
Authors
K. A. Zvezdin
E. G. Ekomasov
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030140