Skip to main content
Top
Published in: Chinese Journal of Mechanical Engineering 3/2017

01-05-2017 | Original Article

Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

Authors: Qianjian GUO, Shuo FAN, Rufeng XU, Xiang CHENG, Guoyong ZHAO, Jianguo YANG

Published in: Chinese Journal of Mechanical Engineering | Issue 3/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Literature
1.
go back to reference PAHK H, LEE S W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J]. The International Journal of Advanced Manufacturing Technology, 2002, 20(7): 487–494. PAHK H, LEE S W. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J]. The International Journal of Advanced Manufacturing Technology, 2002, 20(7): 487–494.
2.
go back to reference MIAO E M, Gong Y Y, NIU P C, et al. Robustness of thermal error modeling models of CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9): 2593–2603. MIAO E M, Gong Y Y, NIU P C, et al. Robustness of thermal error modeling models of CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9): 2593–2603.
3.
go back to reference NI Y B, ZHANG B, SUN Y P, et al. Accuracy analysis and design of A3 parallel spindle head[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 1-11. NI Y B, ZHANG B, SUN Y P, et al. Accuracy analysis and design of A3 parallel spindle head[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 1-11.
4.
go back to reference LIU Y L, LU Y, GAO D, et al. Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9): 2735–2745. LIU Y L, LU Y, GAO D, et al. Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9): 2735–2745.
5.
go back to reference XIANG S, ZHU X, YANG J. Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(18): 3381–3394. XIANG S, ZHU X, YANG J. Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(18): 3381–3394.
6.
go back to reference YU W, YAO X, FU J, et al. Modeling of CNC machine tool thermal errors based on LS-SVM within Bayesian evidence framework[J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2014, 25(17): 2361–2368. YU W, YAO X, FU J, et al. Modeling of CNC machine tool thermal errors based on LS-SVM within Bayesian evidence framework[J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2014, 25(17): 2361–2368.
7.
go back to reference YANG J, MEI X S, ZHAO L, et al. Thermal error modeling of a coordinate boring machine based on fuzzy clustering and SVM[J]. Journal of Shanghai Jiaotong University, 2014, 48(8): 1175–1182. YANG J, MEI X S, ZHAO L, et al. Thermal error modeling of a coordinate boring machine based on fuzzy clustering and SVM[J]. Journal of Shanghai Jiaotong University, 2014, 48(8): 1175–1182.
8.
go back to reference LIU W D, HU Y M, LIU Y, et al. Geometric deviation modeling by kinematic matrix based on lagrangian coordinate[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5):1056-1066. LIU W D, HU Y M, LIU Y, et al. Geometric deviation modeling by kinematic matrix based on lagrangian coordinate[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5):1056-1066.
9.
go back to reference LEI C L, RUI Z Y. Thermal Error Modeling and forecasting based on multivariate autoregressive model for motorized spindle[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(9): 1526–1529. LEI C L, RUI Z Y. Thermal Error Modeling and forecasting based on multivariate autoregressive model for motorized spindle[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(9): 1526–1529.
10.
go back to reference LIN W Q, FU J Z, XU Y Z, et al. Thermal error prediction of numerical control machine tools based on least squares support vector machines[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(6): 905–908. LIN W Q, FU J Z, XU Y Z, et al. Thermal error prediction of numerical control machine tools based on least squares support vector machines[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(6): 905–908.
11.
go back to reference ZHU R, ZHU Y L, CHEN Z, et al. Optimal partition method & stepwise regression based thermal error modeling for a machine tool[J]. Journal of Xiamen University(Natural Science), 2010, 49(1): 52–56. ZHU R, ZHU Y L, CHEN Z, et al. Optimal partition method & stepwise regression based thermal error modeling for a machine tool[J]. Journal of Xiamen University(Natural Science), 2010, 49(1): 52–56.
12.
go back to reference ZHANG C X, GAO F, CHE Y X, et al. Thermal error modeling of multisource information fusion in machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 791-799. ZHANG C X, GAO F, CHE Y X, et al. Thermal error modeling of multisource information fusion in machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 791-799.
13.
go back to reference YAO X P, YIN G F, LI G M. Positioning error of feed axis decouple-separating modeling and compensating research for CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52(1): 184-192. YAO X P, YIN G F, LI G M. Positioning error of feed axis decouple-separating modeling and compensating research for CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52(1): 184-192.
14.
go back to reference YU Z, LIU Z, AI Y, et al. Thermal error modeling of CNC machine tool using neural fuzzy control theory[J]. China Mechanical Engineering, 2014, 25(16): 2225–2231. YU Z, LIU Z, AI Y, et al. Thermal error modeling of CNC machine tool using neural fuzzy control theory[J]. China Mechanical Engineering, 2014, 25(16): 2225–2231.
15.
go back to reference WANG H T, WANG L P, LI T M, et al. Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1): 121–126. WANG H T, WANG L P, LI T M, et al. Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1): 121–126.
16.
go back to reference GUO Q J, YANG J G, Wu H. Application of ACO-BPN to thermal error modeling of NC machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(5): 667–675. GUO Q J, YANG J G, Wu H. Application of ACO-BPN to thermal error modeling of NC machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(5): 667–675.
17.
go back to reference MAO J, ZHAO H D, YAO J J. Application and prospect of artificial neural network[J]. Electronic Design Engineering, 2011, 19(24): 62–65. MAO J, ZHAO H D, YAO J J. Application and prospect of artificial neural network[J]. Electronic Design Engineering, 2011, 19(24): 62–65.
18.
go back to reference WANG L, ZHOU G X, WU Q D. Artificial neural network theory application in control field[J]. Journal of Tonhji University, 2001, 29(3): 357–361. WANG L, ZHOU G X, WU Q D. Artificial neural network theory application in control field[J]. Journal of Tonhji University, 2001, 29(3): 357–361.
19.
go back to reference WU G X, WANG C. Deterministic learning based adaptive network control of robot in task space[J]. ACTA Automatica Sinca, 2013, 39(6): 806–815. WU G X, WANG C. Deterministic learning based adaptive network control of robot in task space[J]. ACTA Automatica Sinca, 2013, 39(6): 806–815.
20.
go back to reference DAI W Z, LOU H C, YANG A P. An overview of neural network predictive control for nonlinear systems[J]. Control Theory & Application, 2009, 26(5): 521–530. DAI W Z, LOU H C, YANG A P. An overview of neural network predictive control for nonlinear systems[J]. Control Theory & Application, 2009, 26(5): 521–530.
21.
go back to reference MA C, ZHAO L, MEI X S, et al. Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2016: 1-15. MA C, ZHAO L, MEI X S, et al. Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2016: 1-15.
22.
go back to reference AHDULSHAHED A M, LONGSTAFF A P, FLETCHER S, et al. Thermal error modeling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera[J]. Applied Mathematical Modeling, 2015, 39(7): 1837-1852. AHDULSHAHED A M, LONGSTAFF A P, FLETCHER S, et al. Thermal error modeling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera[J]. Applied Mathematical Modeling, 2015, 39(7): 1837-1852.
23.
go back to reference XU Y, MAO J. Small precision machine tool thermal error model research based on grey system[J]. Light Industry Machinery, 2016, 34(1): 19-22. XU Y, MAO J. Small precision machine tool thermal error model research based on grey system[J]. Light Industry Machinery, 2016, 34(1): 19-22.
24.
go back to reference LI Y, ZHAO W H, WU W W, et al. Thermal error modeling of the spindle based on multiple variables for the precision machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9): 1415–1427. LI Y, ZHAO W H, WU W W, et al. Thermal error modeling of the spindle based on multiple variables for the precision machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9): 1415–1427.
25.
go back to reference YANG J, SHI H, FENG B, et al. Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine[J]. Variety Management in Manufacturing, Procedia CIRP, 2014, 17: 698–703. YANG J, SHI H, FENG B, et al. Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine[J]. Variety Management in Manufacturing, Procedia CIRP, 2014, 17: 698–703.
26.
go back to reference YANG Z J, KAN Y N, CHEN F, et al. Bayesian reliability modeling and assessment solution for NC machine tools under small-sample data[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6):1229-1239. YANG Z J, KAN Y N, CHEN F, et al. Bayesian reliability modeling and assessment solution for NC machine tools under small-sample data[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6):1229-1239.
27.
go back to reference SUDARSHAN N, PARTHA P S, ACHINTYA D. Training a feed-forward neural network with artificial bee colony based back-propagation method[J]. International Journal of Computer Science & Information Technology, 2012, 4(4): 33–45. SUDARSHAN N, PARTHA P S, ACHINTYA D. Training a feed-forward neural network with artificial bee colony based back-propagation method[J]. International Journal of Computer Science & Information Technology, 2012, 4(4): 33–45.
Metadata
Title
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
Authors
Qianjian GUO
Shuo FAN
Rufeng XU
Xiang CHENG
Guoyong ZHAO
Jianguo YANG
Publication date
01-05-2017
Publisher
Chinese Mechanical Engineering Society
Published in
Chinese Journal of Mechanical Engineering / Issue 3/2017
Print ISSN: 1000-9345
Electronic ISSN: 2192-8258
DOI
https://doi.org/10.1007/s10033-017-0098-0

Other articles of this Issue 3/2017

Chinese Journal of Mechanical Engineering 3/2017 Go to the issue

Premium Partners