Skip to main content
Top

2025 | OriginalPaper | Chapter

Split-State Non-malleable Codes and Secret Sharing Schemes for Quantum Messages

Authors : Naresh Goud Boddu, Vipul Goyal, Rahul Jain, João Ribeiro

Published in: Theory of Cryptography

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. One of the strongest and most well-studied adversarial tampering models is 2-split-state tampering. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of classical messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain (IEEE Trans. Inf. Theory 2024 & arXiv 2022), adversaries with quantum capabilities and shared entanglement had not been considered, and it is a priori not clear whether previous schemes remain secure in this model.
In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. Then, we present explicit constructions of such schemes that achieve low-error non-malleability. More precisely, for some constant \(c>0\), we construct efficiently encodable and decodable split-state non-malleable codes and secret sharing schemes for quantum messages preserving entanglement with external systems and achieving security against quantum adversaries having shared entanglement with codeword length n, any message length at most \(n^c\), and error \(\varepsilon =2^{-{n^{c}}}\). In the easier setting of average-case non-malleability, we achieve efficient non-malleable coding with rate close to 1/11.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A set \(\varGamma \subseteq 2^{[p]}\) is monotone if \(A\in \varGamma \) and \(A\subseteq B\) imply that \(B\in \varGamma \).
 
2
Meaning that the codeword is divided into three parts and the adversary tampers each part independently. We note that constructing NMCs in the 3-split-state model is considerably easier than in the 2-split-state model.
 
3
Tampering maps are assumed to be unitary without any loss of generality. This is because, in the presence of unbounded arbitrary shared entanglement, tampering with unitary maps is equivalent to tampering with CPTP maps. More precisely, consider a tampering adversary that uses two CPTP maps \(\varPhi _1\) and \(\varPhi _2\) acting on registers \(E_1 W_1\) and \(E_2 W_2\), respectively. Then, the action of this adversary is equivalent to another adversary who tampers using Stinespring isometry extensions U and V of \(\varPhi _1\) and \(\varPhi _2\), respectively, which act on \(E_1 W_1 A_1\) and \(E_2 W_2 A_2\), respectively, where \(A_1\) and \(A_2\) are unentangled ancilla registers set to \(|{0}\rangle \) without loss of generality and can be seen as part of the shared entanglement.
 
4
By this, we mean that \(p_{\mathcal {A}}\) can be computed and the state \(\gamma ^{\mathcal {A}}_{M}\) can be prepared without the knowledge of the input message \(\sigma _{M\hat{M}}\).
 
5
Clifford-based quantum authentication schemes apply a random (secret) Clifford operator to the message plus several additional “trap registers” initialized to \(|{0}\rangle \). Verifying whether tampering of the authenticated state occurred consists of checking whether the trap registers all return to the \(|{0}\rangle \) state after applying the inverse Clifford operator. If this does not hold, then the verification procedure outputs the special symbol \(\perp \), which we call the “trap flag”.
 
6
For the experienced reader, Batra, Boddu, and Jain [16] construct an explicit quantum-secure 2-source non-malleable extractor \(\textrm{nmExt}\) with a large output length. We can then sample classical bitstrings X and Y uniformly at random with appropriate lengths and set the classical key R to be \(R=\textrm{nmExt}(X,Y)\); this is the quantum-secure classical NMRE that we use in our optimized coding scheme.
 
7
“qpa-state” stands for quantum purified adversary state.
 
Literature
1.
go back to reference Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography, pp. 393–417. Springer, Heidelberg (2016)CrossRef Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography, pp. 393–417. Springer, Heidelberg (2016)CrossRef
5.
go back to reference Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography, pp. 398–426. Springer, Heidelberg (2015)CrossRef Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography, pp. 398–426. Springer, Heidelberg (2015)CrossRef
6.
go back to reference Aggarwal, D., Kanukurthi, B., Obbattu, S.L.B., Obremski, M., Sekar, S.: Rate one-third non-malleable codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pp. 1364–1377. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3519935.3519972 Aggarwal, D., Kanukurthi, B., Obbattu, S.L.B., Obremski, M., Sekar, S.: Rate one-third non-malleable codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pp. 1364–1377. Association for Computing Machinery, New York (2022). https://​doi.​org/​10.​1145/​3519935.​3519972
13.
go back to reference Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \(\sf AC^0\), decision trees, and streaming space-bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 618–650. Springer (2018).https://doi.org/10.1007/978-3-319-78372-7_20 Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \(\sf AC^0\), decision trees, and streaming space-bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 618–650. Springer (2018).https://​doi.​org/​10.​1007/​978-3-319-78372-7_​20
16.
go back to reference Batra, R., Boddu, N.G., Jain, R.: Quantum secure non-malleable randomness encoder and its applications. arXiv preprint arXiv:2308.07340 (2023). Contributed talk at QCRYPT 2023 Batra, R., Boddu, N.G., Jain, R.: Quantum secure non-malleable randomness encoder and its applications. arXiv preprint arXiv:​2308.​07340 (2023). Contributed talk at QCRYPT 2023
17.
go back to reference Bergamaschi, T.: Pauli manipulation detection codes and applications to quantum communication over adversarial channels. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024, pp. 404–433. Springer, Cham (2024). https://arxiv.org/abs/2304.06269 Bergamaschi, T.: Pauli manipulation detection codes and applications to quantum communication over adversarial channels. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024, pp. 404–433. Springer, Cham (2024). https://​arxiv.​org/​abs/​2304.​06269
19.
go back to reference Boddu, N.G., Goyal, V., Jain, R., Ribeiro, J.: Split-state non-malleable codes and secret sharing schemes for quantum messages. arXiv preprint arXiv:2308.06466 Boddu, N.G., Goyal, V., Jain, R., Ribeiro, J.: Split-state non-malleable codes and secret sharing schemes for quantum messages. arXiv preprint arXiv:​2308.​06466
20.
go back to reference Boddu, N.G., Jain, R., Kapshikar, U.: Quantum secure non-malleable-extractors. arXiv preprint arXiv:2109.03097 (2021). Contributed talk at TQC 2022 Boddu, N.G., Jain, R., Kapshikar, U.: Quantum secure non-malleable-extractors. arXiv preprint arXiv:​2109.​03097 (2021). Contributed talk at TQC 2022
23.
go back to reference Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing: joint tampering, plain model and capacity. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography, pp. 333–364. Springer, Cham (2021)CrossRef Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing: joint tampering, plain model and capacity. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography, pp. 333–364. Springer, Cham (2021)CrossRef
25.
go back to reference Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authentication. In: Nascimento, A.C., Barreto, P. (eds.) Information Theoretic Security, pp. 72–91. Springer, Cham (2016)CrossRef Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authentication. In: Nascimento, A.C., Barreto, P. (eds.) Information Theoretic Security, pp. 72–91. Springer, Cham (2016)CrossRef
33.
go back to reference Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of exact unitary 2-designs. Quantum Info. Comput. 16(9–10), 721–756 (2016) Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of exact unitary 2-designs. Quantum Info. Comput. 16(9–10), 721–756 (2016)
35.
go back to reference Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009)MathSciNetCrossRef Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009)MathSciNetCrossRef
44.
go back to reference Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 1128–1141. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2897518.2897657 Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 1128–1141. Association for Computing Machinery, New York (2016). https://​doi.​org/​10.​1145/​2897518.​2897657
46.
go back to reference Jain, R., Radhakrishnan, J., Sen, P.: Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 429–438 (2002). https://doi.org/10.1109/SFCS.2002.1181967 Jain, R., Radhakrishnan, J., Sen, P.: Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 429–438 (2002). https://​doi.​org/​10.​1109/​SFCS.​2002.​1181967
47.
go back to reference Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 589–617. Springer, Cham (2018)CrossRef Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 589–617. Springer, Cham (2018)CrossRef
48.
go back to reference Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from \(\ell \)-more extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 1317–1328. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978352 Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from \(\ell \)-more extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 1317–1328. Association for Computing Machinery, New York (2016). https://​doi.​org/​10.​1145/​2976749.​2978352
50.
go back to reference Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 1144–1156. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3055399.3055486 Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 1144–1156. Association for Computing Machinery, New York (2017). https://​doi.​org/​10.​1145/​3055399.​3055486
54.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
58.
go back to reference Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)CrossRef Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)CrossRef
Metadata
Title
Split-State Non-malleable Codes and Secret Sharing Schemes for Quantum Messages
Authors
Naresh Goud Boddu
Vipul Goyal
Rahul Jain
João Ribeiro
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78017-2_3

Premium Partner