Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Sponge (Porifera) Collagen for Bone Tissue Engineering

Authors : Ming-Hao Zheng, Jessica Zheng

Published in: Marine-Derived Biomaterials for Tissue Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ultimate goal of tissue engineering is to regenerate and/or replace fully functional tissue, or to stimulate the body to regenerate its own fully functional tissue (Vacanti and Langer in Lancet 354:SI32–SI34, 1999). This technology is of particular use in orthopaedics where various reconstructive operations are conducted throughout the musculoskeletal system. Many tissue engineering techniques utilize specific combinations of living cells, manufactured macromolecular biomaterials (matrices), and bioactive factors (cytokines and/or growth factors) to direct synthesis and organization of tissues (Fodor in Reproductive Biology and Endocrinology 1:102, 2003). The architecture and biochemical nature of matrices is a key aspect of cell-based tissue engineering. The matrix provides a vehicle for delivery of stem cells and progenitors to a desired site, and provides surfaces that facilitate the attachment, survival, migration, proliferation and differentiation of these cells. The ideal scaffold requirements for bone tissue engineering include biocompatibility, osteoconductive or osteoinductive capacity, high porosity that enables nutrient transport, infiltration of cells, degradability over suitable time scales, and interstitial flow of fluid (Bruder and Fox in Clinical Orthopaedics and Related Research 367:S68–83, 1999). The skeletons of Porifera appear to have unique properties that may provide for potential bioscaffolds in cell-based bone tissue engineering. These properties include the collagenous composition of the fiber skeleton, its ability to hydrate to a high degree, and the possession of open interconnected channels created by the fiber network (Green et al. in Tissue Engineering 9:1159–1166, 2003). In addition to this, the phylum has a tremendous diversity of skeletal architecture within the 8000 extant species currently described, many of which are readily available for use (Hooper and Van Soest in Systema Porifera: a guide to the classification of sponges. Academic/Plenum, New York, 2002).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:SI32–SI34CrossRef Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:SI32–SI34CrossRef
2.
go back to reference Fodor WL (2003) Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 1:102CrossRef Fodor WL (2003) Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 1:102CrossRef
3.
go back to reference Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367(Suppl):S68–83CrossRef Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367(Suppl):S68–83CrossRef
4.
go back to reference Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRef Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166CrossRef
5.
go back to reference Hooper JNA, Van Soest RW (eds) (2002) Systema Porifera: a guide to the classification of sponges, vol 1. Kluwer Academic/Plenum, New York Hooper JNA, Van Soest RW (eds) (2002) Systema Porifera: a guide to the classification of sponges, vol 1. Kluwer Academic/Plenum, New York
6.
go back to reference Guyton AC, Hall JE (1996) Textbook of medical physiology, 6th edn. WB Saunders, Philadelphia Guyton AC, Hall JE (1996) Textbook of medical physiology, 6th edn. WB Saunders, Philadelphia
7.
go back to reference Ross MH, Romrell LJ, Kaye GI (eds) (1989) Histology: a text and atlas, 3rd edn. William and Wilkins, New York Ross MH, Romrell LJ, Kaye GI (eds) (1989) Histology: a text and atlas, 3rd edn. William and Wilkins, New York
8.
go back to reference Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56CrossRef Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56CrossRef
9.
go back to reference Hubbell JA (2003) Tissue and cell engineering. Curr Opin Biotechnol 14:517–519CrossRef Hubbell JA (2003) Tissue and cell engineering. Curr Opin Biotechnol 14:517–519CrossRef
10.
go back to reference Meinel L, Karageorgiou V, Fajardo R et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122CrossRef Meinel L, Karageorgiou V, Fajardo R et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122CrossRef
11.
go back to reference Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262CrossRef Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262CrossRef
12.
go back to reference Wu S, Liu X, Yeung KWK et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36CrossRef Wu S, Liu X, Yeung KWK et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36CrossRef
13.
go back to reference Vogel V, Baneyx G (2003) The tissue engineering puzzle: a molecular perspective. Annu Rev Biomed Eng 5:441–463CrossRef Vogel V, Baneyx G (2003) The tissue engineering puzzle: a molecular perspective. Annu Rev Biomed Eng 5:441–463CrossRef
14.
go back to reference Karp JM, Rzeszutek K, Shoichet MS et al (2003) Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J Craniofac Surg 14:317–323CrossRef Karp JM, Rzeszutek K, Shoichet MS et al (2003) Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J Craniofac Surg 14:317–323CrossRef
16.
go back to reference Prasadh S, Wong RCW (2018) Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 15:48–55CrossRef Prasadh S, Wong RCW (2018) Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 15:48–55CrossRef
17.
go back to reference Li X, Wang L, Fan Y et al (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 101:2424–2435CrossRef Li X, Wang L, Fan Y et al (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 101:2424–2435CrossRef
18.
go back to reference Webster TJ, Ergun C, Doremus RH et al (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483CrossRef Webster TJ, Ergun C, Doremus RH et al (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483CrossRef
19.
go back to reference Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr 4:377–381CrossRef Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr 4:377–381CrossRef
20.
go back to reference Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502CrossRef Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502CrossRef
21.
go back to reference Oreffo RO, Virdi AS, Triffitt JT (1997) Modulation of osteogenesis and adipogenesis by human serum in human bone marrow cultures. Eur J Cell Biol 74:251–261 Oreffo RO, Virdi AS, Triffitt JT (1997) Modulation of osteogenesis and adipogenesis by human serum in human bone marrow cultures. Eur J Cell Biol 74:251–261
22.
go back to reference Green D, Walsh D, Mann S et al (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810–815CrossRef Green D, Walsh D, Mann S et al (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810–815CrossRef
23.
go back to reference Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRef Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRef
24.
go back to reference Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A:1541–1558CrossRef Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A:1541–1558CrossRef
26.
go back to reference Lanza RP, Langer R, Vacanti JP (eds) (2000) Principles of tissue engineering, 2nd edn. Academic Press, San Diego Lanza RP, Langer R, Vacanti JP (eds) (2000) Principles of tissue engineering, 2nd edn. Academic Press, San Diego
27.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
28.
go back to reference Vander AJ, Shermann JH, Luciano DS (1985) Human Physiology. McGrew-Hill, New York Vander AJ, Shermann JH, Luciano DS (1985) Human Physiology. McGrew-Hill, New York
29.
go back to reference Li Y, Ma T, Kniss DA et al (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 17:935–944CrossRef Li Y, Ma T, Kniss DA et al (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 17:935–944CrossRef
30.
go back to reference Matsuzaka K, Yoshinari M, Shimono M et al (2004) Effects of multigrooved surfaces on osteoblast-like cells in vitro: scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. J Biomed Mater Res A 68:227–234CrossRef Matsuzaka K, Yoshinari M, Shimono M et al (2004) Effects of multigrooved surfaces on osteoblast-like cells in vitro: scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. J Biomed Mater Res A 68:227–234CrossRef
31.
go back to reference Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636CrossRef Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636CrossRef
32.
go back to reference Ciapetti G, Ambrosio L, Savarino L et al (2003) Osteoblast growth and function in porous poly ɛ-caprolactone matrices for bone repair: a preliminary study. Biomaterials 24:3815–3824CrossRef Ciapetti G, Ambrosio L, Savarino L et al (2003) Osteoblast growth and function in porous poly ɛ-caprolactone matrices for bone repair: a preliminary study. Biomaterials 24:3815–3824CrossRef
33.
go back to reference Yaszemski MJ, Payne RG, Hayes WC et al (1996) In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials 17:2127–2130CrossRef Yaszemski MJ, Payne RG, Hayes WC et al (1996) In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials 17:2127–2130CrossRef
34.
go back to reference Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124CrossRef Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124CrossRef
35.
go back to reference Rosso F, Giordano A, Barbarisi M et al (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199:174–180CrossRef Rosso F, Giordano A, Barbarisi M et al (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199:174–180CrossRef
36.
go back to reference Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRef Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRef
37.
go back to reference Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599CrossRef Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599CrossRef
38.
go back to reference Vats A, Tolley NS, Polak JM et al (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28:165–172CrossRef Vats A, Tolley NS, Polak JM et al (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28:165–172CrossRef
39.
go back to reference Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32:148–159CrossRef Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32:148–159CrossRef
40.
go back to reference Perin E, Miller L, Taylor D et al (eds) (2015) Stem cell and gene therapy for cardiovascular disease, 1st edn. Academic Press, Cambridge, MA Perin E, Miller L, Taylor D et al (eds) (2015) Stem cell and gene therapy for cardiovascular disease, 1st edn. Academic Press, Cambridge, MA
41.
go back to reference Atala A, Lanza RP (eds) (2002) Methods of tissue engineering. Academic Press, San Diego Atala A, Lanza RP (eds) (2002) Methods of tissue engineering. Academic Press, San Diego
44.
go back to reference Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231CrossRef Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231CrossRef
46.
go back to reference Li WJ, Tuli R, Huang X et al (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRef Li WJ, Tuli R, Huang X et al (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRef
47.
go back to reference Shim JS, Lee HS, Shin J et al (2004) Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro. Cancer Lett 203:163–169CrossRef Shim JS, Lee HS, Shin J et al (2004) Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro. Cancer Lett 203:163–169CrossRef
48.
go back to reference Anjum K, Abbas SQ, Shah SA et al (2016) Marine sponges as a drug treasure. Biomol Ther 24:347–362CrossRef Anjum K, Abbas SQ, Shah SA et al (2016) Marine sponges as a drug treasure. Biomol Ther 24:347–362CrossRef
49.
go back to reference Granito RN, Custódio MR, Rennó ACM (2017) Natural marine sponges for bone tissue engineering: the state of art and future perspectives. J Biomed Mater Res B Appl Biomater 105:1717–1727CrossRef Granito RN, Custódio MR, Rennó ACM (2017) Natural marine sponges for bone tissue engineering: the state of art and future perspectives. J Biomed Mater Res B Appl Biomater 105:1717–1727CrossRef
50.
51.
go back to reference Müller WE (2001) Review: how was metazoan threshold crossed? the hypothetical Urmetazoa. Comp Biochem Physiol A: Mol Integr Physiol 129:433–460CrossRef Müller WE (2001) Review: how was metazoan threshold crossed? the hypothetical Urmetazoa. Comp Biochem Physiol A: Mol Integr Physiol 129:433–460CrossRef
52.
go back to reference Müller WE, Schröder HC, Skorokhod A et al (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173CrossRef Müller WE, Schröder HC, Skorokhod A et al (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173CrossRef
53.
go back to reference Bergquist PR (1978) Sponges. Hutchinson, London Bergquist PR (1978) Sponges. Hutchinson, London
54.
go back to reference Kaandorp JA, Kübler JE (2001) The algorithmic beauty of seaweeds, sponges and corals. Springer-Verlag, BerlinCrossRef Kaandorp JA, Kübler JE (2001) The algorithmic beauty of seaweeds, sponges and corals. Springer-Verlag, BerlinCrossRef
55.
go back to reference Wiens M, Mangoni A, D’Esposito M et al (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 57:S60–S75CrossRef Wiens M, Mangoni A, D’Esposito M et al (2003) The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 57:S60–S75CrossRef
56.
go back to reference Garrone R (1978) Phylogenesis of connective tissue: morphological aspects and biosynthesis of sponge intercellular matrix. In: Karger S (ed) Frontiers of matrix biology, vol 5. Springer, Berlin Garrone R (1978) Phylogenesis of connective tissue: morphological aspects and biosynthesis of sponge intercellular matrix. In: Karger S (ed) Frontiers of matrix biology, vol 5. Springer, Berlin
57.
go back to reference Croce G, Frache A, Milanesio M et al (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534CrossRef Croce G, Frache A, Milanesio M et al (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534CrossRef
58.
go back to reference Monn MA, Kesari H (2017) A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability. Sci Rep 7:39547CrossRef Monn MA, Kesari H (2017) A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability. Sci Rep 7:39547CrossRef
59.
go back to reference Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59CrossRef Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59CrossRef
60.
go back to reference Exposito JY, Le Guellec D, Lu Q et al (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266:21923–21928 Exposito JY, Le Guellec D, Lu Q et al (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266:21923–21928
61.
go back to reference Schröder HC, Krasko A, Batel R et al (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031CrossRef Schröder HC, Krasko A, Batel R et al (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031CrossRef
62.
go back to reference Boute N, Exposito JY, Boury-Esnault N et al (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44CrossRef Boute N, Exposito JY, Boury-Esnault N et al (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44CrossRef
63.
go back to reference Wiens M, Koziol C, Batel R et al (1999) Prolidase in the marine sponge Suberites domuncula: enzyme activity, molecular cloning, and phylogenetic relationship. Mar Biotechnol 1:191–199CrossRef Wiens M, Koziol C, Batel R et al (1999) Prolidase in the marine sponge Suberites domuncula: enzyme activity, molecular cloning, and phylogenetic relationship. Mar Biotechnol 1:191–199CrossRef
64.
go back to reference Garrone R, Huc A, Junqua S (1975) Fine structure and physiocochemical studies on the collagen of the marine sponge Chondrosia reniformis nardo. J Ultrastruct Res 52:261–275CrossRef Garrone R, Huc A, Junqua S (1975) Fine structure and physiocochemical studies on the collagen of the marine sponge Chondrosia reniformis nardo. J Ultrastruct Res 52:261–275CrossRef
65.
go back to reference Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRef Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133CrossRef
66.
go back to reference Müller WE, Müller IM, Gamulin V (1994) On the monophyletic evolution of the metazoa. Braz J Med Biol Res 27:2083–2096 Müller WE, Müller IM, Gamulin V (1994) On the monophyletic evolution of the metazoa. Braz J Med Biol Res 27:2083–2096
67.
go back to reference Schäcke H, Schröder HC, Gamulin V et al (1994) Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol Membr Biol 11:101–107CrossRef Schäcke H, Schröder HC, Gamulin V et al (1994) Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol Membr Biol 11:101–107CrossRef
68.
go back to reference Wimmer W, Perovic S, Kruse M et al (1999) Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 260:156–165CrossRef Wimmer W, Perovic S, Kruse M et al (1999) Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 260:156–165CrossRef
69.
go back to reference Pfeifer K, Haasemann M, Gamulin V et al (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184CrossRef Pfeifer K, Haasemann M, Gamulin V et al (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184CrossRef
70.
go back to reference Schütze J, Skorokhod A, Müller IM et al (2001) Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53:402–415CrossRef Schütze J, Skorokhod A, Müller IM et al (2001) Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53:402–415CrossRef
71.
go back to reference Blumbach B, Pancer Z, Diehl-Seifert B et al (1998) The putative sponge aggregation receptor. isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. J Cell Sci 111:2635–2644 Blumbach B, Pancer Z, Diehl-Seifert B et al (1998) The putative sponge aggregation receptor. isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. J Cell Sci 111:2635–2644
72.
go back to reference Müller WE, Krasko A, Skorokhod A et al (2002) Histocompatibility reaction in tissue and cells of the marine sponge Suberites domuncula in vitro and in vivo: central role of the allograft inflammatory factor 1. Immunogenetic 54:48–58CrossRef Müller WE, Krasko A, Skorokhod A et al (2002) Histocompatibility reaction in tissue and cells of the marine sponge Suberites domuncula in vitro and in vivo: central role of the allograft inflammatory factor 1. Immunogenetic 54:48–58CrossRef
73.
go back to reference Loomis WF (1988) Cell-cell adhesion in Dictyostelium discoideum. Dev Genet 9:549–559CrossRef Loomis WF (1988) Cell-cell adhesion in Dictyostelium discoideum. Dev Genet 9:549–559CrossRef
74.
go back to reference Müller WE (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review. Cell Tissue Res 289:383–395CrossRef Müller WE (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review. Cell Tissue Res 289:383–395CrossRef
75.
go back to reference Müller WE, Wiens M, Batel R et al (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219CrossRef Müller WE, Wiens M, Batel R et al (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219CrossRef
76.
go back to reference Kruse M, Leys SP, Müller IM et al (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728CrossRef Kruse M, Leys SP, Müller IM et al (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728CrossRef
77.
go back to reference Borchiellini C, Manuel M, Alivon E et al (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179CrossRef Borchiellini C, Manuel M, Alivon E et al (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179CrossRef
78.
go back to reference Fromont J, Vanderklift MA, Kendrick GA (2006) Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodivers Conserv 15:3731–3750CrossRef Fromont J, Vanderklift MA, Kendrick GA (2006) Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodivers Conserv 15:3731–3750CrossRef
Metadata
Title
Sponge (Porifera) Collagen for Bone Tissue Engineering
Authors
Ming-Hao Zheng
Jessica Zheng
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_12

Premium Partners