Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

04-07-2022 | Original Research Article

Spongy Co3O4 Wrapped Flexible Carbon Cloth by Electrodeposition as an Anode for Lithium-Ion Batteries

Authors: Shizhe Liu, Yanshuang Meng, Hongfu Gao, Xin Wang, Fuliang Zhu

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Herein, electrodeposition and subsequent oxidation were used to successfully construct a spongy flexible Co3O4/carbon cloth electrode with a controlled structure. It can deliver an efficient electron/ion transport network, ease Co3O4 volume expansion, and permit superior kinetics with a higher capacitive contribution; moreover, the preparation of Co3O4/carbon cloth by electrodeposition does not require a binder, making it highly conductive, and the Co3O4/carbon cloth also has high flexibility and can withstand multiple bending. This Co3O4/CC composite electrode, as expected, provides a high capacity of 708 mAh g−1 at a current density of 0.5 A g−1 after 200 cycles, and it has lower impedance (56.08 Ω). After 300 times of bending, its capacity is stable at 682 mAh g−1 at 0.5 A g−1 after 200 cycles, which is 96% of that before bending.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Li, Z. Tang, Z. Liu, and C. Zhi, Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule. 3, 613 (2019).CrossRef H. Li, Z. Tang, Z. Liu, and C. Zhi, Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule. 3, 613 (2019).CrossRef
2.
go back to reference Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, and Z. Liu, Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. Adv. Mater. 31, e1800716 (2019).CrossRef Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, and Z. Liu, Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. Adv. Mater. 31, e1800716 (2019).CrossRef
3.
go back to reference Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, and C. Zhi, Recent Progress of MXene-Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy Environ. Mater. 1, 183 (2018).CrossRef Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, and C. Zhi, Recent Progress of MXene-Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy Environ. Mater. 1, 183 (2018).CrossRef
4.
go back to reference S.H. Kim, K.H. Choi, S.J. Cho, J.T. Yoo, S.S. Lee, and S.Y. Lee, Flexible/Shape-Versatile, Bipolar All-Solid-State Lithium-Ion Batteries Prepared by Multistage Printing. Energy Environ. Sci. 11, 321 (2018).CrossRef S.H. Kim, K.H. Choi, S.J. Cho, J.T. Yoo, S.S. Lee, and S.Y. Lee, Flexible/Shape-Versatile, Bipolar All-Solid-State Lithium-Ion Batteries Prepared by Multistage Printing. Energy Environ. Sci. 11, 321 (2018).CrossRef
5.
go back to reference K.K. Fu, J. Cheng, T. Li, and L. Hu, Flexible Batteries: From Mechanics to Devices. ACS Energy Lett. 1, 1065 (2016).CrossRef K.K. Fu, J. Cheng, T. Li, and L. Hu, Flexible Batteries: From Mechanics to Devices. ACS Energy Lett. 1, 1065 (2016).CrossRef
6.
go back to reference W. Liu, M.S. Song, B. Kong, and Y. Cui, Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv. Mater. 29, 1603436.1 (2017). W. Liu, M.S. Song, B. Kong, and Y. Cui, Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv. Mater. 29, 1603436.1 (2017).
7.
go back to reference Z. Pan, J. Ren, G. Guan, X. Fang, B. Wang, S.G. Doo, I.H. Son, X. Huang, and H. Peng, Synthesizing Nitrogen-Doped Core-Sheath Carbon Nanotube Films for Flexible Lithium Ion Batteries. Adv. Energy Mater. 6, 1600271.1 (2016). Z. Pan, J. Ren, G. Guan, X. Fang, B. Wang, S.G. Doo, I.H. Son, X. Huang, and H. Peng, Synthesizing Nitrogen-Doped Core-Sheath Carbon Nanotube Films for Flexible Lithium Ion Batteries. Adv. Energy Mater. 6, 1600271.1 (2016).
8.
go back to reference S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, Bundled and Densified Carbon Nanotubes (CNT) Fabrics as Flexible Ultra-light Weight Li-Ion Battery Anode Current Collectors. J. Power Sources 312, 109 (2016).CrossRef S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, Bundled and Densified Carbon Nanotubes (CNT) Fabrics as Flexible Ultra-light Weight Li-Ion Battery Anode Current Collectors. J. Power Sources 312, 109 (2016).CrossRef
9.
go back to reference Y. Liu, Y. Fang, Z. Zhao, C. Yuan, and X.W. Lou, A Ternary Fe1−xS@Porous Carbon Nanowires/ Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. Adv. Mater. 9, 1803052.1 (2019). Y. Liu, Y. Fang, Z. Zhao, C. Yuan, and X.W. Lou, A Ternary Fe1xS@Porous Carbon Nanowires/ Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. Adv. Mater. 9, 1803052.1 (2019).
10.
go back to reference H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui, and Q. Zhang, Defect-Rich Carbon Fiber Electrocatalysts with Porous Graphene Skin for Flexible Solid-State Zinc–Air Batteries. Energy Storage Mater. 15, 124 (2018).CrossRef H.F. Wang, C. Tang, B. Wang, B.Q. Li, X. Cui, and Q. Zhang, Defect-Rich Carbon Fiber Electrocatalysts with Porous Graphene Skin for Flexible Solid-State Zinc–Air Batteries. Energy Storage Mater. 15, 124 (2018).CrossRef
11.
go back to reference Q. Lu, X. Wang, J. Cao, C. Chen, K. Chen, Z. Zhao, Z. Niu, and J. Chen, Freestanding Carbon Fiber Cloth/Sulfur Composites for Flexible Room-Temperature Sodium-Sulfur Batteries. Energy Storage Mater. 8, 77 (2017).CrossRef Q. Lu, X. Wang, J. Cao, C. Chen, K. Chen, Z. Zhao, Z. Niu, and J. Chen, Freestanding Carbon Fiber Cloth/Sulfur Composites for Flexible Room-Temperature Sodium-Sulfur Batteries. Energy Storage Mater. 8, 77 (2017).CrossRef
12.
go back to reference M.S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.Q. Liu, and Y. Tong, Achieving High Gravimetric Energy Density for Flexible Lithium-Ion Batteries Facilitated by Core–Double-Shell Electrodes. Energy Environ. Sci. 11, 1859 (2018).CrossRef M.S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.Q. Liu, and Y. Tong, Achieving High Gravimetric Energy Density for Flexible Lithium-Ion Batteries Facilitated by Core–Double-Shell Electrodes. Energy Environ. Sci. 11, 1859 (2018).CrossRef
13.
go back to reference Y. Tian, Y. An, and J. Feng, Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. ACS Appl Mater Interfaces. 11, 10004 (2019).CrossRef Y. Tian, Y. An, and J. Feng, Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. ACS Appl Mater Interfaces. 11, 10004 (2019).CrossRef
14.
go back to reference Y. Tian, Y. An, S. Xiong, J. Feng, and Y. Qian, A General Method for Constructing Robust, Flexible and Freestanding MXene@metal Anodes for High-Performance Potassium-Ion Batteries. J. Mater. Chem. A 7, 9716 (2019).CrossRef Y. Tian, Y. An, S. Xiong, J. Feng, and Y. Qian, A General Method for Constructing Robust, Flexible and Freestanding MXene@metal Anodes for High-Performance Potassium-Ion Batteries. J. Mater. Chem. A 7, 9716 (2019).CrossRef
15.
go back to reference J.Z. Guo, Z.Y. Gu, X.X. Zhao, M.Y. Wang, X. Yang, Y. Yang, W.H. Li, and X.L. Wu, Flexible Na/K-Ion Full Batteries from the Renewable Cotton Cloth-Derived Stable, Low-Cost, and Binder-Free Anode and Cathode. Adv. Energy Mater. 9, 1902056.1 (2019). J.Z. Guo, Z.Y. Gu, X.X. Zhao, M.Y. Wang, X. Yang, Y. Yang, W.H. Li, and X.L. Wu, Flexible Na/K-Ion Full Batteries from the Renewable Cotton Cloth-Derived Stable, Low-Cost, and Binder-Free Anode and Cathode. Adv. Energy Mater. 9, 1902056.1 (2019).
16.
go back to reference G. Zhang, J. Li, J. Sha, C. He, E. Liu, N. Zhao, and C. Shi, Preparation of Fe3O4/Rebar Graphene Composite via Solvothermal Route as Binder Free Anode for Lithium Ion Batteries. J. Alloys Compd. 661, 448 (2016).CrossRef G. Zhang, J. Li, J. Sha, C. He, E. Liu, N. Zhao, and C. Shi, Preparation of Fe3O4/Rebar Graphene Composite via Solvothermal Route as Binder Free Anode for Lithium Ion Batteries. J. Alloys Compd. 661, 448 (2016).CrossRef
17.
go back to reference C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y. Zhang, and Y. Guan, Novel Nanoarchitectured Zn2SnO4 Anchored on Porous Carbon as High Performance Anodes for Lithium Ion Batteries. Mater. Lett. 138, 120 (2015).CrossRef C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y. Zhang, and Y. Guan, Novel Nanoarchitectured Zn2SnO4 Anchored on Porous Carbon as High Performance Anodes for Lithium Ion Batteries. Mater. Lett. 138, 120 (2015).CrossRef
18.
go back to reference Z. Ma and T. Zhao, Reduced Graphene Oxide Anchored with MnO2 Nanorods as Anode for High Rate and Long Cycle Lithium Ion Batteries. Electrochim. Acta 201, 165 (2016).CrossRef Z. Ma and T. Zhao, Reduced Graphene Oxide Anchored with MnO2 Nanorods as Anode for High Rate and Long Cycle Lithium Ion Batteries. Electrochim. Acta 201, 165 (2016).CrossRef
19.
go back to reference N. Xu, Y. Liu, X. Zhang, X. Li, A. Li, J. Qiao, and J. Zhang, Self-assembly Formation of Bifunctional Co3O4/MnO2-CNTs Hybrid Catalysts for Achieving Both High Energy/Power Density and Cyclic Ability of Rechargeable Zincair Battery. Sci. Rep. 6, 33590 (2016).CrossRef N. Xu, Y. Liu, X. Zhang, X. Li, A. Li, J. Qiao, and J. Zhang, Self-assembly Formation of Bifunctional Co3O4/MnO2-CNTs Hybrid Catalysts for Achieving Both High Energy/Power Density and Cyclic Ability of Rechargeable Zincair Battery. Sci. Rep. 6, 33590 (2016).CrossRef
20.
go back to reference L. Li, Z. Zhang, S. Ren, B. Zhang, S. Yang, and B. Cao, Construction of Hollow Co3O4 Cubes as a High-Performance Anode for Lithium Ion Batteries. New J. Chem. 41, 7960 (2017).CrossRef L. Li, Z. Zhang, S. Ren, B. Zhang, S. Yang, and B. Cao, Construction of Hollow Co3O4 Cubes as a High-Performance Anode for Lithium Ion Batteries. New J. Chem. 41, 7960 (2017).CrossRef
21.
go back to reference H. Du, C. Yuan, K. Huang, W. Wang, K. Zhang, and B. Geng, A Novel Gelatin-Guided Mesoporous Bowknot-Like Co3O4 Anode Material for High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 5, 5342 (2017).CrossRef H. Du, C. Yuan, K. Huang, W. Wang, K. Zhang, and B. Geng, A Novel Gelatin-Guided Mesoporous Bowknot-Like Co3O4 Anode Material for High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 5, 5342 (2017).CrossRef
22.
go back to reference F. Yang, W. Li, and B. Tang, Two-Step Method to Synthesize Spinel Co3O4-MnCo2O4 with Excellent Performance for Lithium Ion Batteries. Chem. Eng. J. 334, 2021 (2018).CrossRef F. Yang, W. Li, and B. Tang, Two-Step Method to Synthesize Spinel Co3O4-MnCo2O4 with Excellent Performance for Lithium Ion Batteries. Chem. Eng. J. 334, 2021 (2018).CrossRef
23.
go back to reference K. Cao, Y. Jia, S. Wang, K.J. Huang, and H. Liu, Mn3O4 Nanoparticles Anchored on Carbon Nanotubes as Anode Material with Enhanced Lithium Storage. J. Alloys Compd. 854, 157179 (2021).CrossRef K. Cao, Y. Jia, S. Wang, K.J. Huang, and H. Liu, Mn3O4 Nanoparticles Anchored on Carbon Nanotubes as Anode Material with Enhanced Lithium Storage. J. Alloys Compd. 854, 157179 (2021).CrossRef
24.
go back to reference J. Li, D. Yan, S. Hou, T. Lu, B. Yao, D.H.C. Chua, and L. Pan, Metal-Organic Frameworks Derived Yolk-Shell ZnO/NiO Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries. Chem. Eng. J. 335, 579 (2018).CrossRef J. Li, D. Yan, S. Hou, T. Lu, B. Yao, D.H.C. Chua, and L. Pan, Metal-Organic Frameworks Derived Yolk-Shell ZnO/NiO Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries. Chem. Eng. J. 335, 579 (2018).CrossRef
25.
go back to reference F. Wang, J. Xu, S. Chen, and M. Ren, Method to Predict the Height of the Water Conducting Fractured Zone Based on Bearing Structures in the Overlying Strata. Mine Water Environ. 38, 767 (2019).CrossRef F. Wang, J. Xu, S. Chen, and M. Ren, Method to Predict the Height of the Water Conducting Fractured Zone Based on Bearing Structures in the Overlying Strata. Mine Water Environ. 38, 767 (2019).CrossRef
26.
go back to reference B. Wang, X.Y. Lu, C.W. Tsang, Y. Wang, W.K. Au, H. Guo, and Y. Tang, Charge-Driven Self-Assembly Synthesis of Straw-Sheaf-Like Co3O4 with Superior Cyclability and Rate Capability for Lithium-Ion Batteries. Chem. Eng. J. 338, 278 (2018).CrossRef B. Wang, X.Y. Lu, C.W. Tsang, Y. Wang, W.K. Au, H. Guo, and Y. Tang, Charge-Driven Self-Assembly Synthesis of Straw-Sheaf-Like Co3O4 with Superior Cyclability and Rate Capability for Lithium-Ion Batteries. Chem. Eng. J. 338, 278 (2018).CrossRef
27.
go back to reference J.H. Kim, Y.J. Hong, Y.C. Kang, Y.J. Choi, and Y.S. Kim, Superior Electrochemical Properties of α-Fe2O3 Nanofibers with a Porous Core/Dense Shell Structure Formed from Iron Acetylacetonate-Polyvinylpyrrolidone Composite Fibers. Electrochim. Acta 154, 211 (2015).CrossRef J.H. Kim, Y.J. Hong, Y.C. Kang, Y.J. Choi, and Y.S. Kim, Superior Electrochemical Properties of α-Fe2O3 Nanofibers with a Porous Core/Dense Shell Structure Formed from Iron Acetylacetonate-Polyvinylpyrrolidone Composite Fibers. Electrochim. Acta 154, 211 (2015).CrossRef
28.
go back to reference S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, and K.S. Munawar, Synthesis of Carbon Nanotubes Anchored with Mesoporous Co3O4 Nanoparticles as Anode Material for Lithium-Ion Batteries. Electrochim. Acta 105, 481 (2013).CrossRef S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, and K.S. Munawar, Synthesis of Carbon Nanotubes Anchored with Mesoporous Co3O4 Nanoparticles as Anode Material for Lithium-Ion Batteries. Electrochim. Acta 105, 481 (2013).CrossRef
29.
go back to reference X. Shen, D. Mu, S. Chen, B. Wu, and F. Wu, Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 5, 3118 (2013).CrossRef X. Shen, D. Mu, S. Chen, B. Wu, and F. Wu, Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 5, 3118 (2013).CrossRef
30.
go back to reference M. Zhang, E. Uchaker, S. Hu, Q. Zhang, T. Wang, G. Cao, and J. Li, CoO-Carbon Nanofiber Networks Prepared by Electrospinning as Binder-Free Anode Materials for Lithium-Ion Batteries with Enhanced Properties. Nanoscale 5, 12342 (2013).CrossRef M. Zhang, E. Uchaker, S. Hu, Q. Zhang, T. Wang, G. Cao, and J. Li, CoO-Carbon Nanofiber Networks Prepared by Electrospinning as Binder-Free Anode Materials for Lithium-Ion Batteries with Enhanced Properties. Nanoscale 5, 12342 (2013).CrossRef
31.
go back to reference Z. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 4, 3187 (2010).CrossRef Z. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 4, 3187 (2010).CrossRef
32.
go back to reference J. Wen, L. Xu, J. Wang, Y. Xiong, J. Ma, C. Jiang, L. Cao, J. Li, and M. Zeng, Lithium and Potassium Storage Behavior Comparison for Porous Nanoflaked Co3O4 Anode in Lithium-Ion and Potassium-Ion Batteries. J. Power Sources 474, 228491 (2020).CrossRef J. Wen, L. Xu, J. Wang, Y. Xiong, J. Ma, C. Jiang, L. Cao, J. Li, and M. Zeng, Lithium and Potassium Storage Behavior Comparison for Porous Nanoflaked Co3O4 Anode in Lithium-Ion and Potassium-Ion Batteries. J. Power Sources 474, 228491 (2020).CrossRef
33.
go back to reference K. Wu, B. Geng, C. Zhang, W. Shen, D. Yang, Z. Li, Z. Yang, and D. Pan, Hierarchical Porous Arrays of Mesoporous Co3O4 Nanosheets Grown on Graphene Skin for High-Rate And High-Capacity Energy Storage. J. Alloys Compd. 820, 153296 (2020).CrossRef K. Wu, B. Geng, C. Zhang, W. Shen, D. Yang, Z. Li, Z. Yang, and D. Pan, Hierarchical Porous Arrays of Mesoporous Co3O4 Nanosheets Grown on Graphene Skin for High-Rate And High-Capacity Energy Storage. J. Alloys Compd. 820, 153296 (2020).CrossRef
34.
go back to reference A. Hu, W. Cao, D. Liu, Q. Tang, W. Deng, and X. Chen, Saqima-Like Co3O4/CNTs Secondary Microstructures with Ultrahigh Initial Coulombic Efficiency as an Anode for Lithium Ion Batteries. J. Solid State Electrochem. 22, 417 (2017).CrossRef A. Hu, W. Cao, D. Liu, Q. Tang, W. Deng, and X. Chen, Saqima-Like Co3O4/CNTs Secondary Microstructures with Ultrahigh Initial Coulombic Efficiency as an Anode for Lithium Ion Batteries. J. Solid State Electrochem. 22, 417 (2017).CrossRef
35.
go back to reference X. Zhang, Z. Yang, C. Li, A. Xie, and Y. Shen, A Novel Porous Tubular Co3O4: Self-assembly and Excellent Electrochemical Performance as Anode for Lithium-Ion Batteries. Appl. Surf. Sci. 403, 294 (2017).CrossRef X. Zhang, Z. Yang, C. Li, A. Xie, and Y. Shen, A Novel Porous Tubular Co3O4: Self-assembly and Excellent Electrochemical Performance as Anode for Lithium-Ion Batteries. Appl. Surf. Sci. 403, 294 (2017).CrossRef
36.
go back to reference G. Wang, M. Zhang, Z. Deng, X. Zhang, L. Huo, and S. Gao, Poplar Branch Bio-template Synthesis of Mesoporous Hollow Co3O4 Hierarchical Architecture as an Anode for Long-Life Lithium Ion Batteries. Ceram. Int. 46, 29033 (2020).CrossRef G. Wang, M. Zhang, Z. Deng, X. Zhang, L. Huo, and S. Gao, Poplar Branch Bio-template Synthesis of Mesoporous Hollow Co3O4 Hierarchical Architecture as an Anode for Long-Life Lithium Ion Batteries. Ceram. Int. 46, 29033 (2020).CrossRef
37.
go back to reference D. Yan, Y. Zhang, X. Zhang, Z. Yu, Y. Zhao, G. Zhu, G. Chen, C. Ma, H. Xu, and A. Yu, Co3O4 Microtubules Derived from a Biotemplated Method for Improved Lithium Storage Performance. Ceram. Int. 43, 9235 (2017).CrossRef D. Yan, Y. Zhang, X. Zhang, Z. Yu, Y. Zhao, G. Zhu, G. Chen, C. Ma, H. Xu, and A. Yu, Co3O4 Microtubules Derived from a Biotemplated Method for Improved Lithium Storage Performance. Ceram. Int. 43, 9235 (2017).CrossRef
38.
go back to reference N.C. Maile, S.K. Shinde, R.R. Koli, A.V. Fulari, D.Y. Kim, and V.J. Fulari, Effect of Different Electrolytes and Deposition Time on the Supercapacitor Properties of Nanoflake-Like Co(OH)2 Electrodes. Ultrason. Sonochem. 51, 49 (2019).CrossRef N.C. Maile, S.K. Shinde, R.R. Koli, A.V. Fulari, D.Y. Kim, and V.J. Fulari, Effect of Different Electrolytes and Deposition Time on the Supercapacitor Properties of Nanoflake-Like Co(OH)2 Electrodes. Ultrason. Sonochem. 51, 49 (2019).CrossRef
39.
go back to reference C. Zhu, Y. Wen, P.A. van Aken, J. Maier, and Y. Yu, High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. Adv. Funct. Mater. 25, 2335 (2015).CrossRef C. Zhu, Y. Wen, P.A. van Aken, J. Maier, and Y. Yu, High Lithium Storage Performance of FeS Nanodots in Porous Graphitic Carbon Nanowires. Adv. Funct. Mater. 25, 2335 (2015).CrossRef
40.
go back to reference H. Hu, L. Han, M. Yu, Z. Wang, and D. Lou, Metal–Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction. Energy Environ. Sci. 9, 107 (2016).CrossRef H. Hu, L. Han, M. Yu, Z. Wang, and D. Lou, Metal–Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction. Energy Environ. Sci. 9, 107 (2016).CrossRef
41.
go back to reference Y. Hu, C. Yan, D. Chen, C. Lv, Y. Jiao, and G. Chen, One-Dimensional Co3O4 Nanonet with Enhanced Rate Performance for Lithium Ion Batteries: Carbonyl-β-cyclodextrin Inducing and Kinetic Analysis. Chem. Eng. J. 321, 31 (2017).CrossRef Y. Hu, C. Yan, D. Chen, C. Lv, Y. Jiao, and G. Chen, One-Dimensional Co3O4 Nanonet with Enhanced Rate Performance for Lithium Ion Batteries: Carbonyl-β-cyclodextrin Inducing and Kinetic Analysis. Chem. Eng. J. 321, 31 (2017).CrossRef
42.
go back to reference Y. Chen, Y. Wang, H. Yang, H. Gan, X. Cai, X. Guo, B. Xu, M. Lv, and A. Yuan, Facile Synthesis of Porous Hollow Co3O4 Microfibers Derived-from Metal-Organic Frameworks as an Advanced Anode for Lithium Ion Batteries. Ceram. Int. 43, 9945 (2017).CrossRef Y. Chen, Y. Wang, H. Yang, H. Gan, X. Cai, X. Guo, B. Xu, M. Lv, and A. Yuan, Facile Synthesis of Porous Hollow Co3O4 Microfibers Derived-from Metal-Organic Frameworks as an Advanced Anode for Lithium Ion Batteries. Ceram. Int. 43, 9945 (2017).CrossRef
43.
go back to reference S. Xiong, J.S. Chen, X.W. Lou, and H.C. Zeng, Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-Like Co(CO3)0.5(OH)0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 22, 861 (2012).CrossRef S. Xiong, J.S. Chen, X.W. Lou, and H.C. Zeng, Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-Like Co(CO3)0.5(OH)0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 22, 861 (2012).CrossRef
44.
go back to reference L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, and F. Zhao, Facile Synthesis of a Co3O4–Carbon Nanotube Composite and Its Superior Performance as an Anode Material for Li-Ion Batteries. Electrochim. Acta A.1, 1141 (2012). L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, and F. Zhao, Facile Synthesis of a Co3O4–Carbon Nanotube Composite and Its Superior Performance as an Anode Material for Li-Ion Batteries. Electrochim. Acta A.1, 1141 (2012).
45.
go back to reference H. Chen, Q. Zhang, J. Wang, D. Xu, X. Li, Y. Yang, and K. Zhang, Improved Lithium Ion Battery Performance by Mesoporous Co3O4 Nanosheets Grown on Self-standing NiSix Nanowires on Nickel Foam. J. Mater. Chem. A.2, 8483 (2014).CrossRef H. Chen, Q. Zhang, J. Wang, D. Xu, X. Li, Y. Yang, and K. Zhang, Improved Lithium Ion Battery Performance by Mesoporous Co3O4 Nanosheets Grown on Self-standing NiSix Nanowires on Nickel Foam. J. Mater. Chem. A.2, 8483 (2014).CrossRef
46.
go back to reference B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Lett. 12, 3005 (2012).CrossRef B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Lett. 12, 3005 (2012).CrossRef
47.
go back to reference Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song, R. Mi, W. Kong, B. Liu, Y. Jiang, K. Yang, and L. Hu, Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 8, 1802398 (2018).CrossRef Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song, R. Mi, W. Kong, B. Liu, Y. Jiang, K. Yang, and L. Hu, Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 8, 1802398 (2018).CrossRef
48.
go back to reference W. Zhang, Y. Liu, C. Chen, Z. Li, Y. Huang, and X. Hu, Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries. Small 11, 3822 (2015).CrossRef W. Zhang, Y. Liu, C. Chen, Z. Li, Y. Huang, and X. Hu, Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries. Small 11, 3822 (2015).CrossRef
Metadata
Title
Spongy Co3O4 Wrapped Flexible Carbon Cloth by Electrodeposition as an Anode for Lithium-Ion Batteries
Authors
Shizhe Liu
Yanshuang Meng
Hongfu Gao
Xin Wang
Fuliang Zhu
Publication date
04-07-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09782-6

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue