Skip to main content
Top

2022 | OriginalPaper | Chapter

4. Spray Breakup Modelling for Internal Combustion Engines

Authors : Utkarsha Sonawane, Avinash Kumar Agarwal

Published in: Engine Modeling and Simulation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rising concerns about emissions have led to a significant tightening of pollution norms for internal combustion (IC) engines. High-pressure direct injection (HPDI) technologies have been adopted for most on-road and off-road engines to meet the global demand for clean and efficient powertrains. Higher fuel efficiency, superior combustion, and lower pollutant formation are the characteristic features of the HPDI. The introduction of alternative fuels, modified combustion geometry, and novel combustion concepts demand continuous improvement in fuel injection equipment (FIE). The complicated physics of HPDI and its modelling is an active area of research among researchers and engine developers. Fuel-injected in the combustion chamber breaks up into a spray of fine droplets, evaporating, mixing with ambient air, and forming a fuel–air mixture, greatly affecting the engine combustion and emission characteristics. Therefore, it is necessary to study the fuel breakup phenomenon under different engine conditions comprehensively. Detailed understanding of the spray breakup phenomenon is unavailable due to difficulties in optical access, highly dense sprays, complex processes, etc. However, recent advances in measurement technologies and computational tools have made it feasible for researchers. This chapter attempts to capture widely used spray breakup models and research studies involving IC engines. Fundamental spray breakup and atomization have been discussed at the beginning of the chapter. Subsequently, the basis and fundamentals of popular spray models have been discussed. Finally, the authors have comprehensively discussed the key contributions in sprays to provide an overall idea about the spray models and their application for IC engine studies. Various spray breakup models such as Blob Model, Linear Instability Sheet Atomization (LISA) Model, Kelvin–Helmholtz (KH) Model, Kelvin–Helmholtz-Aerodynamics Cavitation Turbulence (KH-ACT) Model, RT (Rayleigh–Taylor) Model, Hybrid/Modified Kelvin–Helmholtz Rayleigh–Taylor (KH-RT) Model, Taylor Analogy Breakup (TAB) Model, Enhanced TAB breakup model (ETAB) are discussed briefly in this chapter. Towards the end, a summary of the contents of the chapter is provided, which covers highlights and significant observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Badra JA, Sim J, Elwardany A, Jaasim M, Viollet Y, Chang J, Amer A, Im HG (2016) Numerical simulations of hollow-cone injection and gasoline compression ignition combustion with naphtha fuels. J Energy Resour Technol 138(5). https://doi.org/10.1115/1.4032622 Badra JA, Sim J, Elwardany A, Jaasim M, Viollet Y, Chang J, Amer A, Im HG (2016) Numerical simulations of hollow-cone injection and gasoline compression ignition combustion with naphtha fuels. J Energy Resour Technol 138(5). https://​doi.​org/​10.​1115/​1.​4032622
go back to reference Baumgarten C (2006) Mixture formation in internal combustion engines. Springer, Berlin Heidelberg Baumgarten C (2006) Mixture formation in internal combustion engines. Springer, Berlin Heidelberg
go back to reference Beale JC (1999) Modelling fuel injection using the Kelvin–Helmholtz/Rayleigh–Taylor hybrid atomization model in KIVA-3V, MS thesis in mechanical engineering, University of Wisconsin, Madison Beale JC (1999) Modelling fuel injection using the Kelvin–Helmholtz/Rayleigh–Taylor hybrid atomization model in KIVA-3V, MS thesis in mechanical engineering, University of Wisconsin, Madison
go back to reference Bekdemir C, Somers LMT, De Goey LPH (2008) Numerical modelling of diesel spray formation and combustion. MS thesis, Eindhoven University of Technology Bekdemir C, Somers LMT, De Goey LPH (2008) Numerical modelling of diesel spray formation and combustion. MS thesis, Eindhoven University of Technology
go back to reference Bravo L, Kweon CB (2014) A review on liquid spray models for diesel engine computational analysis. Army Research Lab Aberdeen Proving Ground MD. Accession number: ADA603658 Bravo L, Kweon CB (2014) A review on liquid spray models for diesel engine computational analysis. Army Research Lab Aberdeen Proving Ground MD. Accession number: ADA603658
go back to reference Huh KY (1991) A phenomenological model of diesel spray atomization. In: Proceedings of the international conference on multiphase flows’ 91-Tsukuba Huh KY (1991) A phenomenological model of diesel spray atomization. In: Proceedings of the international conference on multiphase flows’ 91-Tsukuba
go back to reference Liu RC, Le JL, Song WY, Yang SH (2016) LISA model for simulation of liquid sheet breakup in swirl injection. In: Material science and environmental engineering: the proceedings of 2016 international workshop on material science and environmental engineering (IWMSEE2016), pp 653–662. https://doi.org/10.1142/9789813143401_0071 Liu RC, Le JL, Song WY, Yang SH (2016) LISA model for simulation of liquid sheet breakup in swirl injection. In: Material science and environmental engineering: the proceedings of 2016 international workshop on material science and environmental engineering (IWMSEE2016), pp 653–662. https://​doi.​org/​10.​1142/​9789813143401_​0071
go back to reference Matysiak A (2007) EV zur S tropfenbeladener S in einem V. Euler-Lagrange Verfahren zur Simulation tropfenbeladener Strömung in einem Verdichtergitte Ph.D. Thesis, Department of Mechanical Engineering, Helmut Schmidt Universität - Universität der Bundeswehr Hamburg Matysiak A (2007) EV zur S tropfenbeladener S in einem V. Euler-Lagrange Verfahren zur Simulation tropfenbeladener Strömung in einem Verdichtergitte Ph.D. Thesis, Department of Mechanical Engineering, Helmut Schmidt Universität - Universität der Bundeswehr Hamburg
go back to reference Nsikane D, Mustafa K, Ward A, Morgan R, Mason D, Heikal M (2017) Statistical approach on visualizing multi-variable interactions in a hybrid breakup model under ECN spray conditions. SAE Int J Engines 10(5):2461–2477. Retrieved June 25, 2021 from https://www.jstor.org/stable/26422627 Nsikane D, Mustafa K, Ward A, Morgan R, Mason D, Heikal M (2017) Statistical approach on visualizing multi-variable interactions in a hybrid breakup model under ECN spray conditions. SAE Int J Engines 10(5):2461–2477. Retrieved June 25, 2021 from https://​www.​jstor.​org/​stable/​26422627
go back to reference Pickett L (2008) Engine modeling user’s group meeting at the SAE congress, Detroit, MI Pickett L (2008) Engine modeling user’s group meeting at the SAE congress, Detroit, MI
go back to reference Senecal PK, Richards KJ, Pomraning E, Yang T, Dai MZ, McDavid RM, Cartesian ANPCC (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations. SAE technical papers 2007-01-0159. https://doi.org/10.4271/2007-01-0159 Senecal PK, Richards KJ, Pomraning E, Yang T, Dai MZ, McDavid RM, Cartesian ANPCC (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations. SAE technical papers 2007-01-0159. https://​doi.​org/​10.​4271/​2007-01-0159
go back to reference Stiesch G (2003) Modelling engine spray and combustion processes. Springer, Berlin HeidelbergCrossRef Stiesch G (2003) Modelling engine spray and combustion processes. Springer, Berlin HeidelbergCrossRef
go back to reference Von Helldorff H, Micklow GJ (2019) Primary and secondary spray breakup modelling for internal combustion engine applications. J Multidiscip Eng Sci Technol (JMEST) 6(4). ISSN: 2458-9403 Von Helldorff H, Micklow GJ (2019) Primary and secondary spray breakup modelling for internal combustion engine applications. J Multidiscip Eng Sci Technol (JMEST) 6(4). ISSN: 2458-9403
go back to reference Zamani H, Hosseini V, Afshin H, Allocca L, Baloo M (2016) Large eddy simulation of GDI single-hole and multi-hole injector sprays with comparison of numerical break-up models and coefficients. J Applied Fluid Mech 9(2) Zamani H, Hosseini V, Afshin H, Allocca L, Baloo M (2016) Large eddy simulation of GDI single-hole and multi-hole injector sprays with comparison of numerical break-up models and coefficients. J Applied Fluid Mech 9(2)
Metadata
Title
Spray Breakup Modelling for Internal Combustion Engines
Authors
Utkarsha Sonawane
Avinash Kumar Agarwal
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-8618-4_4

Premium Partner