Skip to main content
Top

2022 | OriginalPaper | Chapter

5. Sputtering

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sputtering techniques are of great importance for both academic research and commercial applications. This chapter summarizes the fundamentals of the sputtering process, especially after low-energy ion bombardment. The theoretical description of the total sputtering yield, and the energy and angular distribution of the sputtered atoms is based on the assumption of a linear cascade regime. The description of the sputtering process in the linear regime according to Sigmund for amorphous materials by means of the Boltzmann transport equation is briefly presented, the energy dependence of the sputtering yield is demonstrated, and the influence of critical parameters, such as surface binding energy, threshold energy and material correction factor is discussed. The dependence of the sputtering yield on the ion incidence angle and also the energy and angular distributions of the sputtered particles are considered in detail. The particular case of preferential sputtering in low-energy ion bombardment of binary materials is addressed, considering both the mass effect and the bonding effect. An important aspect of this chapter is the measurement of the sputtering yield and energy and angular distributions of the sputtered particles. Finally, the reflection of low-energy ions from surfaces is briefly presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Sigmund, Collison theory of displacement damage, ion ranges, and sputtering. Phys. Roum. Rev. 17 823–870, 969–1000, and 1079–1106 (1972) P. Sigmund, Collison theory of displacement damage, ion ranges, and sputtering. Phys. Roum. Rev. 17 823–870, 969–1000, and 1079–1106 (1972)
2.
go back to reference H. Oechsner, Sputtering – a review of some recent experimental and theoretical aspects. Appl. Phys. 8, 185–198 (1975)CrossRef H. Oechsner, Sputtering – a review of some recent experimental and theoretical aspects. Appl. Phys. 8, 185–198 (1975)CrossRef
3.
go back to reference R. Behrisch (Ed.), Sputtering by particle bombardment I, Topics in Appl. Physics, Vol. 47, (Springer-Verlag Berlin Heidelberg, 1981) R. Behrisch (Ed.), Sputtering by particle bombardment I, Topics in Appl. Physics, Vol. 47, (Springer-Verlag Berlin Heidelberg, 1981)
4.
go back to reference R. Behrisch (Ed.), Sputtering by particle bombardment II, Topics in Appl. Physics, Vol. 52, (Springer-Verlag Berlin Heidelberg, 1983) R. Behrisch (Ed.), Sputtering by particle bombardment II, Topics in Appl. Physics, Vol. 52, (Springer-Verlag Berlin Heidelberg, 1983)
5.
go back to reference R. Behrisch (Ed.), Sputtering by Particle Bombardment III, Topics in Appl. Physics, Vol. 64, (Springer-Verlag Berlin Heidelberg, 1991) R. Behrisch (Ed.), Sputtering by Particle Bombardment III, Topics in Appl. Physics, Vol. 64, (Springer-Verlag Berlin Heidelberg, 1991)
6.
go back to reference H. Gnaser, Low-energy ion irradiation of solid surfaces (Springer-Verlag, Berlin Heidelberg, 1999) H. Gnaser, Low-energy ion irradiation of solid surfaces (Springer-Verlag, Berlin Heidelberg, 1999)
7.
go back to reference R. Behrisch, W. Eckstein (ed.), Sputtering by Particle Bombardment IV, Topics in Appl. Physics, Vol. 110, (Springer-Verlag Berlin Heidelberg, 2007) R. Behrisch, W. Eckstein (ed.), Sputtering by Particle Bombardment IV, Topics in Appl. Physics, Vol. 110, (Springer-Verlag Berlin Heidelberg, 2007)
8.
go back to reference P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383–416 (1969) P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev. 184, 383–416 (1969)
9.
go back to reference P. Sigmund, Sputtering by ion bombardment: theoretical concepts, in Ref. [3], pp. 9–71 P. Sigmund, Sputtering by ion bombardment: theoretical concepts, in Ref. [3], pp. 9–71
10.
go back to reference J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by ccreened Coulomb fields – notes on atomic collision I, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 36, no. 10 (1968) J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by ccreened Coulomb fields – notes on atomic collision I, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 36, no. 10 (1968)
11.
go back to reference N. Matsunami, Y. Yamammura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, A semiempirical formula for the energy dependence of sputtering yield. Rad. Effects Lett. 57, 15–216 (1980)CrossRef N. Matsunami, Y. Yamammura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, A semiempirical formula for the energy dependence of sputtering yield. Rad. Effects Lett. 57, 15–216 (1980)CrossRef
12.
go back to reference W.D. Wilson, L.G. Haggmark, J.P. Biersack, Calculation of nuclear stopping, ranges, and straggling in low-energy range. Phys. Rev. B 15, 2458–2468 (1977)CrossRef W.D. Wilson, L.G. Haggmark, J.P. Biersack, Calculation of nuclear stopping, ranges, and straggling in low-energy range. Phys. Rev. B 15, 2458–2468 (1977)CrossRef
13.
go back to reference H.H. Andersen, H.L. Bay, Sputtering-yield studies on silicon and silver targets. Rad. Effects 19, 139–146 (1973)CrossRef H.H. Andersen, H.L. Bay, Sputtering-yield studies on silicon and silver targets. Rad. Effects 19, 139–146 (1973)CrossRef
14.
go back to reference J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP, Appl. Phys. 174, 257–269 (1984) J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP, Appl. Phys. 174, 257–269 (1984)
15.
go back to reference P.C. Zalm, Some useful yield estimates for ion beam sputtering and ion plating at low bombarding energies. J. Vac. Sci. Technol. B 2, 151–152 (1984)CrossRef P.C. Zalm, Some useful yield estimates for ion beam sputtering and ion plating at low bombarding energies. J. Vac. Sci. Technol. B 2, 151–152 (1984)CrossRef
16.
go back to reference G. Dupp, A. Scharmann, Die Zerstäubung von Kupfer durch Ne+-, Ar+- Kr+- und Xe+-Ionen im Energiebereich von 75 keV bis 1 MeV. Z. Physik 192, 284–298 (1966)CrossRef G. Dupp, A. Scharmann, Die Zerstäubung von Kupfer durch Ne+-, Ar+- Kr+- und Xe+-Ionen im Energiebereich von 75 keV bis 1 MeV. Z. Physik 192, 284–298 (1966)CrossRef
17.
go back to reference H.L. Bay, H.H. Andersen, W.O. Hofer, O. Nielsen, The energy dependence of gold selfsputtering. Nucl. Instr. Meth. 132, 301–305 (1976)CrossRef H.L. Bay, H.H. Andersen, W.O. Hofer, O. Nielsen, The energy dependence of gold selfsputtering. Nucl. Instr. Meth. 132, 301–305 (1976)CrossRef
18.
go back to reference D.A. Thompson, High density cascade effects, Rad. Eff. 56, 105–150 (1981) and S.S. Johar, D.A. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films, Surf. Sci. 90, 319–330 (1979) D.A. Thompson, High density cascade effects, Rad. Eff. 56, 105150 (1981) and S.S. Johar, D.A. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films, Surf. Sci. 90, 319–330 (1979)
19.
go back to reference K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag A 44, 741–762 (1981)CrossRef K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag A 44, 741–762 (1981)CrossRef
20.
go back to reference P. Sigmund, C. Claussen, Sputtering from elastic collision spikes in heavy-ion-bombarded metals. J. Appl. Phys. 52, 990–993 (1981)CrossRef P. Sigmund, C. Claussen, Sputtering from elastic collision spikes in heavy-ion-bombarded metals. J. Appl. Phys. 52, 990–993 (1981)CrossRef
21.
go back to reference R. Kelly, The mechanisms of sputtering. Part I: Prompt and slow collisional sputtering, Rad. Effects 80, 273–317 (1984) and The varieties of surface alteration: structural, topographical, and compositional, in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, ed. by O. Auciello, R. Kelly, (Elsevier, Amsterdam, 1984) pp 79–126 R. Kelly, The mechanisms of sputtering. Part I: Prompt and slow collisional sputtering, Rad. Effects 80, 273–317 (1984) and The varieties of surface alteration: structural, topographical, and compositional, in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, ed. by O. Auciello, R. Kelly, (Elsevier, Amsterdam, 1984) pp 79–126
22.
go back to reference P. Sigmund, M. Szymonski, Temperature-dependent sputtering of metals and insulators. Appl. Phys. A 33, 141–152 (1984)CrossRef P. Sigmund, M. Szymonski, Temperature-dependent sputtering of metals and insulators. Appl. Phys. A 33, 141–152 (1984)CrossRef
23.
go back to reference G. Carter, Spike and shock processes in high energy deposition density atomic collision events in solids, Rad. Effects Lett. 43, 193–199 (1979) and A semi quantitative approach to ion impact induced shock processes in solids, Rad. Effects Lett. 50, 105–109 (1980) G. Carter, Spike and shock processes in high energy deposition density atomic collision events in solids, Rad. Effects Lett. 43, 193199 (1979) and A semi quantitative approach to ion impact induced shock processes in solids, Rad. Effects Lett. 50, 105–109 (1980)
24.
go back to reference B. Rauschenbach, K. Hohmuth, Analysis of heavy-ion sputtering based on the shock wave model. Phys. Stat. Sol. (a) 79, 395–400 (1983)CrossRef B. Rauschenbach, K. Hohmuth, Analysis of heavy-ion sputtering based on the shock wave model. Phys. Stat. Sol. (a) 79, 395–400 (1983)CrossRef
25.
go back to reference K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag. A 44, 741–762 (1981)CrossRef K.L. Merkle, W. Jäger, Direct observation of spike effects in heavy-ion sputtering. Phil. Mag. A 44, 741–762 (1981)CrossRef
26.
go back to reference H. Gades, H.M. Urbassek, Surface binding energies of alloys: a many-body approach. Nucl. Instr. Meth in Phys. Res. B 88, 218–228 (1994)CrossRef H. Gades, H.M. Urbassek, Surface binding energies of alloys: a many-body approach. Nucl. Instr. Meth in Phys. Res. B 88, 218–228 (1994)CrossRef
27.
go back to reference H. Gnaser, Energy and angular distributions of sputtered species, in Ref. [7], pp. 231–329 H. Gnaser, Energy and angular distributions of sputtered species, in Ref. [7], pp. 231–329
28.
go back to reference B.J. Garrison, N. Winograd, D. Lo, T.A. Tombrello, M.H. Shapiro, Energy cost to sputter an atom from a surface in keV ion bombardment processes. Surf. Sci. 180, L129–L133 (1987)CrossRef B.J. Garrison, N. Winograd, D. Lo, T.A. Tombrello, M.H. Shapiro, Energy cost to sputter an atom from a surface in keV ion bombardment processes. Surf. Sci. 180, L129–L133 (1987)CrossRef
29.
go back to reference W. Eckstein, J.P. Biersack, Computer simulation of two-component target sputtering. Appl. Phys. A 37, 95–108 (1985)CrossRef W. Eckstein, J.P. Biersack, Computer simulation of two-component target sputtering. Appl. Phys. A 37, 95–108 (1985)CrossRef
30.
go back to reference R.C. Bradley, Sputtering of alkali atoms by inert gas ions of low-energy. Phys. Rev. 93, 1421–1430 (1954)CrossRef R.C. Bradley, Sputtering of alkali atoms by inert gas ions of low-energy. Phys. Rev. 93, 1421–1430 (1954)CrossRef
31.
go back to reference J. Bohdansky, J. Roth, H.L. Bay, An analytical formula and important parameters for low-energy ion sputtering. J. Appl. Phys. 51, 2861–2865 (1980)CrossRef J. Bohdansky, J. Roth, H.L. Bay, An analytical formula and important parameters for low-energy ion sputtering. J. Appl. Phys. 51, 2861–2865 (1980)CrossRef
32.
go back to reference N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara., Energy-dependence of ion-induced sputtering yields of monoatomic solids, Atomic Data and Nuclear Table 31,1–80 (1984) N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara., Energy-dependence of ion-induced sputtering yields of monoatomic solids, Atomic Data and Nuclear Table 31,1–80 (1984)
33.
go back to reference Y. Yamamura, H. Tawara, Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidences, Atomic Data and Nuclear Tables, 62, 149–253 (1996), [Erratum in Atomic Data and Nuclear Tables, 63, 353 (1996)] Y. Yamamura, H. Tawara, Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidences, Atomic Data and Nuclear Tables, 62, 149253 (1996), [Erratum in Atomic Data and Nuclear Tables, 63, 353 (1996)]
34.
go back to reference W. Eckstein, R. Preuss, New fit formulae for the sputtering yield. J. of Nucl. Mater. 320, 209–213 (2003)CrossRef W. Eckstein, R. Preuss, New fit formulae for the sputtering yield. J. of Nucl. Mater. 320, 209–213 (2003)CrossRef
35.
go back to reference R.V. Stuardt, G.K. Wehner, Sputtering yield at very low bombarding ion energies. J. Appl. Phys. 33, 2345–2352 (1962)CrossRef R.V. Stuardt, G.K. Wehner, Sputtering yield at very low bombarding ion energies. J. Appl. Phys. 33, 2345–2352 (1962)CrossRef
36.
go back to reference W. Eckstein, Sputtering yields, in Ref. [7], pp. 33–187 W. Eckstein, Sputtering yields, in Ref. [7], pp. 33–187
37.
go back to reference P.C. Zalm, Energy dependence of the sputtering yield of silicon bombarded with neon, argon, krypton, and xenon ions. J. Appl. Phys. 54, 2660–2666 (1983)CrossRef P.C. Zalm, Energy dependence of the sputtering yield of silicon bombarded with neon, argon, krypton, and xenon ions. J. Appl. Phys. 54, 2660–2666 (1983)CrossRef
38.
go back to reference H.H. Andersen, H.L. Bay, Heavy-ion sputtering yields of gold: Further evidence of nonlinear effects. J. Appl. Phys. 46, 2416–2422 (1975)CrossRef H.H. Andersen, H.L. Bay, Heavy-ion sputtering yields of gold: Further evidence of nonlinear effects. J. Appl. Phys. 46, 2416–2422 (1975)CrossRef
39.
go back to reference Ch. Steinbrüchel, A simple formula for low-energy sputtering yields, Appl. Phys. A 36, 37–42 (1985) Ch. Steinbrüchel, A simple formula for low-energy sputtering yields, Appl. Phys. A 36, 37–42 (1985)
40.
go back to reference J. Bohdansky, A universal relation for the sputtering yield of monoatomic solids at normal ion incidence. Nucl. Instr. Meth. in Phys. Res. B 2, 587–591 (1984)CrossRef J. Bohdansky, A universal relation for the sputtering yield of monoatomic solids at normal ion incidence. Nucl. Instr. Meth. in Phys. Res. B 2, 587–591 (1984)CrossRef
41.
go back to reference G.L. Chen, unpublished, quoted in Ref. [22] G.L. Chen, unpublished, quoted in Ref. [22]
42.
go back to reference J. Bohdansky, Important sputtering yield data for Tokamaks: A comparison of measurements and estimates. J. Nucl. Mater. 93(94), 44–60 (1980)CrossRef J. Bohdansky, Important sputtering yield data for Tokamaks: A comparison of measurements and estimates. J. Nucl. Mater. 93(94), 44–60 (1980)CrossRef
43.
go back to reference Y. Matsunami, Y. Yamamura, Y. Itikawa, N. Irtoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, Energy dependence of sputtering yields of monatomic solids, Report JPPJ-Am-14 (1980) Y. Matsunami, Y. Yamamura, Y. Itikawa, N. Irtoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, Energy dependence of sputtering yields of monatomic solids, Report JPPJ-Am-14 (1980)
44.
go back to reference Y. Yamamura, N. Matsunami, N. Itoh, Theoretical studies on an empirical formula for sputtering yield at normal incidence. Rad. Eff. 71, 65–86 (1983)CrossRef Y. Yamamura, N. Matsunami, N. Itoh, Theoretical studies on an empirical formula for sputtering yield at normal incidence. Rad. Eff. 71, 65–86 (1983)CrossRef
45.
go back to reference H.J. Strydom, W.H. Gries, A comparison of three versions of Sigmund’s model of sputtering using experimental results, Rad. Eff. Lett. 86 (1984) 145–151 and W.H. Gries, H.J. Strydom, A table of normalized sputtering yields for mono-elemental polycrystalline targets, Report SMAT, 1984 H.J. Strydom, W.H. Gries, A comparison of three versions of Sigmund’s model of sputtering using experimental results, Rad. Eff. Lett. 86 (1984) 145–151 and W.H. Gries, H.J. Strydom, A table of normalized sputtering yields for mono-elemental polycrystalline targets, Report SMAT, 1984
46.
go back to reference C. Gracía-Rosales, W. Eckstein, J. Roth, Revised formulae for sputtering data. J. Nucl. Mater. 218, 8–17 (1994)CrossRef C. Gracía-Rosales, W. Eckstein, J. Roth, Revised formulae for sputtering data. J. Nucl. Mater. 218, 8–17 (1994)CrossRef
47.
go back to reference W. Eckstein, C. Garcís-Rosales, J. Roth, W. Ottenberger, Sputtering Data, IPP – Report 9/82, 1993 W. Eckstein, C. Garcís-Rosales, J. Roth, W. Ottenberger, Sputtering Data, IPP – Report 9/82, 1993
48.
go back to reference M. Tartz, T. Heyn, C. Bundesmann, C. Zimmermann, H. Neumann, Sputter yields of Mo, Ti, W, Al, Ag under xenon ion incidence. Eur. Phys. J. D 61, 587–592 (2011)CrossRef M. Tartz, T. Heyn, C. Bundesmann, C. Zimmermann, H. Neumann, Sputter yields of Mo, Ti, W, Al, Ag under xenon ion incidence. Eur. Phys. J. D 61, 587–592 (2011)CrossRef
49.
go back to reference M. Tartz, H. Neumann, H. Leiter, J. Esch, Pyrolytic graphite and carbon-carbon sputter behaviour under xenon ion incidence, Proceed. 29th Intern. Electric Propulsion Conference, IEPC 2005-143, Princeton 2005 M. Tartz, H. Neumann, H. Leiter, J. Esch, Pyrolytic graphite and carbon-carbon sputter behaviour under xenon ion incidence, Proceed. 29th Intern. Electric Propulsion Conference, IEPC 2005-143, Princeton 2005
50.
go back to reference G. Falcone, Sputtering theory. Rivista del Nuovo Cimento 13(1), 1–52 (1990)CrossRef G. Falcone, Sputtering theory. Rivista del Nuovo Cimento 13(1), 1–52 (1990)CrossRef
51.
go back to reference J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 34 no. 14 (1965) J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 34 no. 14 (1965)
52.
go back to reference A.D.G. Stewart, M.W. Thompson, Microtopography of surfaces eroded by ion bombardment. J. Mater. Sci. 4, 56–60 (1969)CrossRef A.D.G. Stewart, M.W. Thompson, Microtopography of surfaces eroded by ion bombardment. J. Mater. Sci. 4, 56–60 (1969)CrossRef
53.
go back to reference J.P. Ducommun, M. Cantagel, M. Moulin, Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation. J. Mater. Sci. 10, 52–62 (1975)CrossRef J.P. Ducommun, M. Cantagel, M. Moulin, Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation. J. Mater. Sci. 10, 52–62 (1975)CrossRef
54.
go back to reference Y. Yamamura, An empirical formula for angular dependence of sputtering yields Rad. Effects 80, 57–72 (1984)CrossRef Y. Yamamura, An empirical formula for angular dependence of sputtering yields Rad. Effects 80, 57–72 (1984)CrossRef
55.
go back to reference M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces, Nanoscale Res. Lett. 4 (1914) 439 M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces, Nanoscale Res. Lett. 4 (1914) 439
56.
go back to reference D. Manova, M. Schreck, S. Mändl, B. Stritzker, B. Rauschenbach, Orientation dependent sputter yield of aluminium. Surf. Coat. Technol. 151–152, 72–75 (2002)CrossRef D. Manova, M. Schreck, S. Mändl, B. Stritzker, B. Rauschenbach, Orientation dependent sputter yield of aluminium. Surf. Coat. Technol. 151–152, 72–75 (2002)CrossRef
57.
go back to reference A.L. Southern, W.R. Willis, M.T. Robinson, Sputtering experiments with 1- to 5-keV Ar+ ions. J. Appl. Phys. 34, 153–163 (1963)CrossRef A.L. Southern, W.R. Willis, M.T. Robinson, Sputtering experiments with 1- to 5-keV Ar+ ions. J. Appl. Phys. 34, 153–163 (1963)CrossRef
58.
go back to reference X.-S. Wang, R.J. Pechman, J.H. Weaver, Ion sputtering of GaAs(110): From individual bombardment events to multilayer removal. J. Vac. Sci. Technol. B 13, 2031–2040 (1995)CrossRef X.-S. Wang, R.J. Pechman, J.H. Weaver, Ion sputtering of GaAs(110): From individual bombardment events to multilayer removal. J. Vac. Sci. Technol. B 13, 2031–2040 (1995)CrossRef
59.
go back to reference G.N. van Wyk, N.J. Smith, Ion bombardment induced preferential orientation in polycrystalline Cu Targets. Rad. Eff. 38, 245–247 (1987) G.N. van Wyk, N.J. Smith, Ion bombardment induced preferential orientation in polycrystalline Cu Targets. Rad. Eff. 38, 245–247 (1987)
60.
go back to reference D. Dobrev, Ion-beam-induced texture formation in vacuum-condensed thin metal films. Thin Solid Films 92, 41–53 (1982)CrossRef D. Dobrev, Ion-beam-induced texture formation in vacuum-condensed thin metal films. Thin Solid Films 92, 41–53 (1982)CrossRef
61.
go back to reference D.D. Odintsov, Dependence of single-crystal sputtering on the direction of incidence of particles. Soviet Physics-Solid State 5, 813–815 (1963) D.D. Odintsov, Dependence of single-crystal sputtering on the direction of incidence of particles. Soviet Physics-Solid State 5, 813–815 (1963)
62.
go back to reference Yu.V. Martynenko, Theory of single crystal sputtering. Soviet Physics-Solid State 6, 1581–1585 (1965) Yu.V. Martynenko, Theory of single crystal sputtering. Soviet Physics-Solid State 6, 1581–1585 (1965)
63.
go back to reference D. Onderdelinden, The influence of channeling on Cu single-crystal sputtering Appl. Phys. Lett. 8, 189–191 (1966) D. Onderdelinden, The influence of channeling on Cu single-crystal sputtering Appl. Phys. Lett. 8, 189–191 (1966)
64.
go back to reference H. Gnaser, Energy and angular distributions of sputtered species, in Ref. [7], pp. 231–328 H. Gnaser, Energy and angular distributions of sputtered species, in Ref. [7], pp. 231–328
65.
go back to reference W.O. Hofer, Angular, energy and mass distribution of sputtered particles, in Ref. [5], pp. 15–90 W.O. Hofer, Angular, energy and mass distribution of sputtered particles, in Ref. [5], pp. 15–90
66.
go back to reference T. Ono, T. Kenmotsu, T. Muramoto, Simulation of sputtering process, in Reactive Sputter Deposition, ed. by D. Depla, S. Mahieu, (Springer-Verlag, Berlin, Heidelberg 2008) pp 1–42 T. Ono, T. Kenmotsu, T. Muramoto, Simulation of sputtering process, in Reactive Sputter Deposition, ed. by D. Depla, S. Mahieu, (Springer-Verlag, Berlin, Heidelberg 2008) pp 1–42
67.
go back to reference M.W. Thompson, II. The energy spectrum of ejected atoms during the high energy sputtering of gold, Phil. Mag. 18, 377–411 (1968) and Physical mechanisms of sputtering, Phys. Rep. 69, 335–371 (1981) M.W. Thompson, II. The energy spectrum of ejected atoms during the high energy sputtering of gold, Phil. Mag. 18, 377411 (1968) and Physical mechanisms of sputtering, Phys. Rep. 69, 335–371 (1981)
68.
go back to reference K. Meyer, I.K. Schuller, C.M. Falco, Thermalization of sputtered atoms. J. Appl. Phys. 52, 5803–5805 (1981)CrossRef K. Meyer, I.K. Schuller, C.M. Falco, Thermalization of sputtered atoms. J. Appl. Phys. 52, 5803–5805 (1981)CrossRef
69.
go back to reference V.V. Serikov, K. Nanbu, Monte Carlo numerical analysis of target erosion and film growth in three-dimensional sputter chamber. J. Vac. Sci. Technol. A 14, 3108–3123 (1996)CrossRef V.V. Serikov, K. Nanbu, Monte Carlo numerical analysis of target erosion and film growth in three-dimensional sputter chamber. J. Vac. Sci. Technol. A 14, 3108–3123 (1996)CrossRef
70.
go back to reference A. Goehlich, D. Gillmann, H.F. Döbele, Angular resolved energy distributions of sputtered atoms at low bombarding energy. Nucl. Instr. Meth in Phys. Res. B 164–165, 843–839 (2000) A. Goehlich, D. Gillmann, H.F. Döbele, Angular resolved energy distributions of sputtered atoms at low bombarding energy. Nucl. Instr. Meth in Phys. Res. B 164–165, 843–839 (2000)
71.
go back to reference T. Kenmotsu, Y. Yamamura, T. Ono, T. Kawamura, A new formula for energy spectrum of sputtered atoms due to low-energy. J. Plasma and Fusion Res. 80, 406–409 (2004)CrossRef T. Kenmotsu, Y. Yamamura, T. Ono, T. Kawamura, A new formula for energy spectrum of sputtered atoms due to low-energy. J. Plasma and Fusion Res. 80, 406–409 (2004)CrossRef
72.
go back to reference A. Goehlich, N. Niemöller, H.F. Döbele, Anisotopiy effects in physical sputtering investigated by laser-induced fluorescence spectroscopy. Phys. Rev. 62, 9349–9358 (2000)CrossRef A. Goehlich, N. Niemöller, H.F. Döbele, Anisotopiy effects in physical sputtering investigated by laser-induced fluorescence spectroscopy. Phys. Rev. 62, 9349–9358 (2000)CrossRef
73.
go back to reference Y. Yamamura, T. Takiguchi, M. Ishida, Energy and angular distributions of sputtered atoms at normal incidence. Rad. Eff. Def. Solids 118, 237–261 (1991)CrossRef Y. Yamamura, T. Takiguchi, M. Ishida, Energy and angular distributions of sputtered atoms at normal incidence. Rad. Eff. Def. Solids 118, 237–261 (1991)CrossRef
74.
go back to reference Z.L. Zhang, L. Zhang, Anisotropic angular distribution of sputtered atoms. Rad. Eff. & Defects in Solids 159, 301–307 (2004)CrossRef Z.L. Zhang, L. Zhang, Anisotropic angular distribution of sputtered atoms. Rad. Eff. & Defects in Solids 159, 301–307 (2004)CrossRef
75.
go back to reference Y. Yamamura, Contribution of anisotropic velocity distribution of recoil atoms to sputtering and angular distributions of sputtered atoms. Rad. Eff. 55, 49–55 (1981)CrossRef Y. Yamamura, Contribution of anisotropic velocity distribution of recoil atoms to sputtering and angular distributions of sputtered atoms. Rad. Eff. 55, 49–55 (1981)CrossRef
76.
go back to reference K. Zoerb, J.D. Williams, D.D. Williams, A.P. Yalin, Differential sputtering yields of refractory metals by xenon, krypton, and argon ion bombardment at normal and oblique incidences, Proceed. 29th Intern. Electr. Propulsion Conf., Princeton Univ. 2005, paper IEPC-2005–293 and A.P. Yalin, B. Rubin, S.R. Domingue, Z. Glueckert, J.D. Williams, Differential sputter yields of boron nitride, quartz, and kapton due to low-energy Xe+ bombardment, Proceed. 43rd AIAA Joint Propulsion Conf., Cincinnati 2007, paper 2007–5314 K. Zoerb, J.D. Williams, D.D. Williams, A.P. Yalin, Differential sputtering yields of refractory metals by xenon, krypton, and argon ion bombardment at normal and oblique incidences, Proceed. 29th Intern. Electr. Propulsion Conf., Princeton Univ. 2005, paper IEPC-2005293 and A.P. Yalin, B. Rubin, S.R. Domingue, Z. Glueckert, J.D. Williams, Differential sputter yields of boron nitride, quartz, and kapton due to low-energy Xe+ bombardment, Proceed. 43rd AIAA Joint Propulsion Conf., Cincinnati 2007, paper 2007–5314
77.
go back to reference M. Stepanova, S.K. Dew, Estimates of differential sputtering yields for deposition application. J. Vac. Sci. Technol. A 19, 2805–2816 (2001)CrossRef M. Stepanova, S.K. Dew, Estimates of differential sputtering yields for deposition application. J. Vac. Sci. Technol. A 19, 2805–2816 (2001)CrossRef
78.
go back to reference G. Betz, G.K. Wehner, Sputtering of multicomponent materials, in Ref. [4], pp. 11–90 G. Betz, G.K. Wehner, Sputtering of multicomponent materials, in Ref. [4], pp. 11–90
79.
go back to reference H.H. Anderson, Nonlinear effects in collisional sputtering under cluster impact, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 43, 127–154 (1993) H.H. Anderson, Nonlinear effects in collisional sputtering under cluster impact, Det. Kgl. Danske Vid. Selskab., Mat.-Fys. Medd. 43, 127–154 (1993)
80.
go back to reference V.I. Zaporozchenko, M.G. Stepanova, Preferential sputtering in binary targets. Progr. Surf. Sci. 49, 155–196 (1995) CrossRef V.I. Zaporozchenko, M.G. Stepanova, Preferential sputtering in binary targets. Progr. Surf. Sci. 49, 155–196 (1995) CrossRef
81.
go back to reference R. Kelly, Surface compositional changes by particle bombardment, in Chemistry and Physics of Solid Surfaces V, ed. by. R. Vanselow, R. Howe, (Springer Verlag Berlin, 1984) pp. 159–182 R. Kelly, Surface compositional changes by particle bombardment, in Chemistry and Physics of Solid Surfaces V, ed. by. R. Vanselow, R. Howe, (Springer Verlag Berlin, 1984) pp. 159–182
82.
go back to reference R. Shimizu, Preferential sputtering. Nucl. Instr. Meth in Phys. Res. B 18, 486–495 (1987)CrossRef R. Shimizu, Preferential sputtering. Nucl. Instr. Meth in Phys. Res. B 18, 486–495 (1987)CrossRef
83.
go back to reference J.B. Malherbe, Sputtering of compound semiconductor surfaces. II. Compositional changes and radiation-induced topography and damage, Crit. Rev. Solid Stat. Mater. Sci. 19, 129–195 (1994) J.B. Malherbe, Sputtering of compound semiconductor surfaces. II. Compositional changes and radiation-induced topography and damage, Crit. Rev. Solid Stat. Mater. Sci. 19, 129–195 (1994)
84.
go back to reference R. Shimizu, N. Saeki, Study of preferential sputtering on binary alloy by in-situ Auger measurement of sputtered and sputter-deposited surfaces. Surf. Sci. 62, 751–755 (1977)CrossRef R. Shimizu, N. Saeki, Study of preferential sputtering on binary alloy by in-situ Auger measurement of sputtered and sputter-deposited surfaces. Surf. Sci. 62, 751–755 (1977)CrossRef
85.
go back to reference R.R. Olsen, M.E. King, G.K. Wehner, Mass effects on angular distribution of sputtered atoms. J. Appl. Phys. 50, 3677–3683 (1979)CrossRef R.R. Olsen, M.E. King, G.K. Wehner, Mass effects on angular distribution of sputtered atoms. J. Appl. Phys. 50, 3677–3683 (1979)CrossRef
86.
go back to reference H. Gnaser, H. Oechsner, Mass effects on angular distribution of sputtered atoms. Phys. Rev. Lett. 63, 2673–2676 (1989)CrossRef H. Gnaser, H. Oechsner, Mass effects on angular distribution of sputtered atoms. Phys. Rev. Lett. 63, 2673–2676 (1989)CrossRef
87.
go back to reference P. Sigmund, Sputtering of single and multiple component materials. J. Vac. Sci. Technol. 17, 396–399 (1980)CrossRef P. Sigmund, Sputtering of single and multiple component materials. J. Vac. Sci. Technol. 17, 396–399 (1980)CrossRef
88.
go back to reference J.B. Malherbe, S. Hofmann, J.M. Sam, Preferential sputtering of oxides: A comparison of model predictions with experimental data. Appl. Surf. Sci. 27, 355–365 (1986)CrossRef J.B. Malherbe, S. Hofmann, J.M. Sam, Preferential sputtering of oxides: A comparison of model predictions with experimental data. Appl. Surf. Sci. 27, 355–365 (1986)CrossRef
89.
go back to reference L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960) L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960)
90.
go back to reference R. Kelly, An attempt to understand preferential sputtering, Nucl. Instr. Meth. 149, 553–558 (1978) and On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides Surf. Sci. 100, 85–107 (1980) R. Kelly, An attempt to understand preferential sputtering, Nucl. Instr. Meth. 149, 553–558 (1978) and On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides Surf. Sci. 100, 85–107 (1980)
91.
go back to reference N.Q. Lam, H. Wiedersich, Bombardment-induced segregation and redistribution. Nucl. Instr. Meth in Phys. Res. B 18, 471–485 (1987)CrossRef N.Q. Lam, H. Wiedersich, Bombardment-induced segregation and redistribution. Nucl. Instr. Meth in Phys. Res. B 18, 471–485 (1987)CrossRef
92.
go back to reference V. Tuboltsev, P. Kalkanen, M. Kolodyazhnaya, J. Räisänen, Composition dependence of Si1-xGex sputter yield, Phys. Rev. B 72, 205434 (2005) V. Tuboltsev, P. Kalkanen, M. Kolodyazhnaya, J. Räisänen, Composition dependence of Si1-xGex sputter yield, Phys. Rev. B 72, 205434 (2005)
93.
go back to reference M.Z. Hossain, J.B. Freund, H.T. Johnson, Differential sputter yields in Si1-xGex, J. Appl. Phys. 103, 073508 (2008) M.Z. Hossain, J.B. Freund, H.T. Johnson, Differential sputter yields in Si1-xGex, J. Appl. Phys. 103, 073508 (2008)
94.
go back to reference W.R. Grove, On the electrochemical polarity of gases, Phil. Trans. Royal Soc. (London) B 142, 87–102 (1852) W.R. Grove, On the electrochemical polarity of gases, Phil. Trans. Royal Soc. (London) B 142, 87–102 (1852)
95.
go back to reference N. Laegreid, G.K. Wehner, Sputtering yields of metals for low-energy Ar+-, and Ne+- ions with energies from 50 to 600 eV. J. of Appl. Phys. 32, 365–368 (1961)CrossRef N. Laegreid, G.K. Wehner, Sputtering yields of metals for low-energy Ar+-, and Ne+- ions with energies from 50 to 600 eV. J. of Appl. Phys. 32, 365–368 (1961)CrossRef
96.
go back to reference G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. für Physik 155, 206–222 (1959)CrossRef G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. für Physik 155, 206–222 (1959)CrossRef
97.
go back to reference A.W. Czanderna, T.E. Madey, C.J. Powell [Eds.), Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis, (Kluwer Academic Publ., New York 2002) A.W. Czanderna, T.E. Madey, C.J. Powell [Eds.), Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis, (Kluwer Academic Publ., New York 2002)
98.
go back to reference F. Gao, R.K. Leach, J. Petzing, J.M. Coupland, Surface measurement errors using commercial scanning white light interferometers, Meas. Sci. Technol. 19, 015303 (2008) F. Gao, R.K. Leach, J. Petzing, J.M. Coupland, Surface measurement errors using commercial scanning white light interferometers, Meas. Sci. Technol. 19, 015303 (2008)
99.
go back to reference T. Whitaker, A. Li, P. Jones, R. Watts, Angular distributions of sputtered zirconium atoms. J. Chem. Phys 98, 5887–5898 (1993)CrossRef T. Whitaker, A. Li, P. Jones, R. Watts, Angular distributions of sputtered zirconium atoms. J. Chem. Phys 98, 5887–5898 (1993)CrossRef
100.
go back to reference G. Betz, K. Wien, Energy and angular distributions of sputtered particles. Intern. J. Mass Spectr. Ion Processes 140, 1–110 (1994)CrossRef G. Betz, K. Wien, Energy and angular distributions of sputtered particles. Intern. J. Mass Spectr. Ion Processes 140, 1–110 (1994)CrossRef
101.
go back to reference H.H. Andersen, H.I. Bay, Sputtering yield measurements, in Ref. [3], pp.145–218 H.H. Andersen, H.I. Bay, Sputtering yield measurements, in Ref. [3], pp.145–218
102.
go back to reference E.S. Mashkova, V.A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985) E.S. Mashkova, V.A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985)
103.
go back to reference T. Tabata, R. Ito, Y. Itikawa, N. Itoh, K. Morita, Backscattering coefficients of H, D, and He ions from solids. At. Data Nucl. Data Tables 28, 493–530 (1983)CrossRef T. Tabata, R. Ito, Y. Itikawa, N. Itoh, K. Morita, Backscattering coefficients of H, D, and He ions from solids. At. Data Nucl. Data Tables 28, 493–530 (1983)CrossRef
104.
go back to reference W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer Series in Material Science, Vol. 10, (Springer, Berlin 1991) W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer Series in Material Science, Vol. 10, (Springer, Berlin 1991)
105.
go back to reference W. Eckstein, Reflection (backscattering), (IPP report 17/12, 2009) W. Eckstein, Reflection (backscattering), (IPP report 17/12, 2009)
106.
go back to reference J. BøSttiger, J.A Davies, P. Sigmund, K.B. Winterbon, On the reflection coefficient of keV heavy-ion beams from solid targets, Rad. Eff. 11, 69–78 (1971) J. BøSttiger, J.A Davies, P. Sigmund, K.B. Winterbon, On the reflection coefficient of keV heavy-ion beams from solid targets, Rad. Eff. 11, 69–78 (1971)
107.
go back to reference G.M. McCracken, N.J. Freeman, Back-scattering of keV hydrogen ions in solids. J. Phys. B 2, 661–668 (1969)CrossRef G.M. McCracken, N.J. Freeman, Back-scattering of keV hydrogen ions in solids. J. Phys. B 2, 661–668 (1969)CrossRef
108.
go back to reference J. Vucanic, P. Sigmund, Total backscattering of keV light ions from solid targets in single-collision approximation. Appl. Phys. 11, 265–272 (1976)CrossRef J. Vucanic, P. Sigmund, Total backscattering of keV light ions from solid targets in single-collision approximation. Appl. Phys. 11, 265–272 (1976)CrossRef
109.
go back to reference W. Eckstein, J.P. Biersack, The reflection of light swift particles from heavy solid targets. Z.Physik A 310, 1–8 (1983) W. Eckstein, J.P. Biersack, The reflection of light swift particles from heavy solid targets. Z.Physik A 310, 1–8 (1983)
110.
go back to reference E.S. Parilis, V.K. Verleger, Energy spectra and charge states of light atoms scattered by solid surface, J. Nucl. Mater. 93 & 94, 512–517 (1980) E.S. Parilis, V.K. Verleger, Energy spectra and charge states of light atoms scattered by solid surface, J. Nucl. Mater. 93 & 94, 512–517 (1980)
111.
go back to reference E.S. Mashkova, Particle and energy reflection from solid surfaces. Rad. Eff. 54, 1–28 (1981)CrossRef E.S. Mashkova, Particle and energy reflection from solid surfaces. Rad. Eff. 54, 1–28 (1981)CrossRef
112.
go back to reference A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00,( IPP Report 2019-02, 2019) A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00,( IPP Report 2019-02, 2019)
113.
go back to reference U. Littmark, A. Gras-Marti, Energy spectra of light ions backscattered from random solids. Appl. Phys. 16, 247–253 (1978)CrossRef U. Littmark, A. Gras-Marti, Energy spectra of light ions backscattered from random solids. Appl. Phys. 16, 247–253 (1978)CrossRef
114.
go back to reference C.A. Ordonez, R.E. Peterkin, Numerical determination of plasma ion reflection coefficients at a sheath-surface interface. J. Nucl. Mater. 228, 201–206 (1991)CrossRef C.A. Ordonez, R.E. Peterkin, Numerical determination of plasma ion reflection coefficients at a sheath-surface interface. J. Nucl. Mater. 228, 201–206 (1991)CrossRef
115.
go back to reference V.S. Remizovich, M.I. Ryazanov, I.S. Tilinin, Energy and angular distributions of particles reflected in glancing incidence of a beam of ions on the surface of a material. Sov. Phys. JETP 52, 225–230 (1981) V.S. Remizovich, M.I. Ryazanov, I.S. Tilinin, Energy and angular distributions of particles reflected in glancing incidence of a beam of ions on the surface of a material. Sov. Phys. JETP 52, 225–230 (1981)
116.
go back to reference Y. Xia, X. Xu, C. Tan, L. Mei, H. Yang, X. Sun, Reflection of light ion from solid surfaces studied by Monte Carlo simulation and transport theory. J. Appl. Phys. 69, 439–446 (1991)CrossRef Y. Xia, X. Xu, C. Tan, L. Mei, H. Yang, X. Sun, Reflection of light ion from solid surfaces studied by Monte Carlo simulation and transport theory. J. Appl. Phys. 69, 439–446 (1991)CrossRef
117.
go back to reference E.W. Thomas, R.K. Janev, J.J. Smith, Scaling of particle reflection coefficients. Nucl. Instr. Meth. B 69, 427–436 (1992)CrossRef E.W. Thomas, R.K. Janev, J.J. Smith, Scaling of particle reflection coefficients. Nucl. Instr. Meth. B 69, 427–436 (1992)CrossRef
118.
go back to reference R. Wedell, J.-P. Kuska, Theoretical description of sputtering at grazing incidence. Nucl. Instr. Meth. in Phys. Res. B 78, 204–211 (1993)CrossRef R. Wedell, J.-P. Kuska, Theoretical description of sputtering at grazing incidence. Nucl. Instr. Meth. in Phys. Res. B 78, 204–211 (1993)CrossRef
119.
go back to reference W. Eckstein, Physical sputtering and reflection processes in plasma-wall interactions. J. Nucl. Mater. 248, 1–8 (1997)CrossRef W. Eckstein, Physical sputtering and reflection processes in plasma-wall interactions. J. Nucl. Mater. 248, 1–8 (1997)CrossRef
Metadata
Title
Sputtering
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_5

Premium Partners