Skip to main content
Top
Published in: Journal of Scientific Computing 2/2018

17-05-2018

Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations

Authors: Lingling Zhou, Yan Xu

Published in: Journal of Scientific Computing | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we focus on the theoretical analysis of the second and third order semi-implicit spectral deferred correction (SDC) time discretization with local discontinuous Galerkin (LDG) spatial discretization for the one-dimensional linear convection–diffusion equations. We mainly study the stability and error estimates of the corresponding fully discrete scheme. Based on the Picard integral equation, the SDC method is driven iteratively by either the explicit Euler method or the implicit Euler method. It is easy to implement for arbitrary order of accuracy. For the semi-implicit SDC scheme, the iteration and the left-most endpoint involved in the integral for the implicit part increase the difficulty of the theoretical analysis. To be more precise, the test functions are more complex and the energy equations are more difficult to construct, compared with the Runge–Kutta type semi-implicit schemes. Applying the energy techniques, we obtain both the second and third order semi-implicit SDC time discretization with LDG spatial discretization are stable provided the time step \(\tau \le \tau _{0}\), where the positive \(\tau _{0}\) depends on the diffusion and convection coefficients and is independent of the mesh size h. We then obtain the optimal error estimates for the corresponding fully discrete scheme under the condition \(\tau \le \tau _{0}\) with similar technique for stability analysis. Numerical examples are presented to illustrate our theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRef Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRef
2.
go back to reference Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRef Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRef
3.
go back to reference Boscarino, S., Qiu, J.M., Russo, G.: Implicit–explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40, A787–A816 (2018)MathSciNetCrossRef Boscarino, S., Qiu, J.M., Russo, G.: Implicit–explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40, A787–A816 (2018)MathSciNetCrossRef
4.
go back to reference Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRef Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRef
5.
go back to reference Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH
6.
go back to reference Calvo, M.P., Frutos, J.D., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)MathSciNetCrossRef Calvo, M.P., Frutos, J.D., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)MathSciNetCrossRef
7.
go back to reference Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)MathSciNetMATH
8.
go back to reference Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRef
9.
go back to reference Christlieb, A., Ong, B., Qiu, J.M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4, 27–56 (2009)MathSciNetCrossRef Christlieb, A., Ong, B., Qiu, J.M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4, 27–56 (2009)MathSciNetCrossRef
10.
go back to reference Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)MathSciNetCrossRef Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)MathSciNetCrossRef
11.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
12.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRef
13.
go back to reference Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRef
14.
go back to reference Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)MathSciNetCrossRef Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)MathSciNetCrossRef
15.
go back to reference Feng, X.L., Tang, T., Yang, J.L.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)MathSciNetCrossRef Feng, X.L., Tang, T., Yang, J.L.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37, A271–A294 (2015)MathSciNetCrossRef
16.
go back to reference Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier colocation spectral method for 3-D viscous Burger’s equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetCrossRef Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier colocation spectral method for 3-D viscous Burger’s equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetCrossRef
17.
go back to reference Guo, R.H., Xia, Y.H., Xu, Y.: Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations. J. Comput. Phys. 338, 269–284 (2017)MathSciNetCrossRef Guo, R.H., Xia, Y.H., Xu, Y.: Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations. J. Comput. Phys. 338, 269–284 (2017)MathSciNetCrossRef
18.
go back to reference Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer, New York (2008)MATH Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer, New York (2008)MATH
19.
go back to reference Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45, 341–373 (2005)MathSciNetCrossRef Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45, 341–373 (2005)MathSciNetCrossRef
20.
go back to reference Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)MathSciNetCrossRef Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)MathSciNetCrossRef
21.
go back to reference Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transprot equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transprot equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
22.
go back to reference Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. SIAM, Philadelphia (2008)CrossRef Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. SIAM, Philadelphia (2008)CrossRef
23.
go back to reference Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38, A2535–A2557 (2016)MathSciNetCrossRef Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38, A2535–A2557 (2016)MathSciNetCrossRef
24.
go back to reference Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, pp. 149–201. Birkhäuser, Besel (2009) Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, pp. 149–201. Birkhäuser, Besel (2009)
25.
go back to reference Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin method with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)MathSciNetCrossRef Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin method with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)MathSciNetCrossRef
26.
go back to reference Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)MathSciNet Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)MathSciNet
27.
go back to reference Wang, H.J., Wang, S.P., Shu, C.-W., Zhang, Q.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM Math. Model. Numer. Anal. 50, 1083–1105 (2016)MathSciNetCrossRef Wang, H.J., Wang, S.P., Shu, C.-W., Zhang, Q.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM Math. Model. Numer. Anal. 50, 1083–1105 (2016)MathSciNetCrossRef
28.
go back to reference Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2008)MathSciNetCrossRef Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D 208, 21–58 (2008)MathSciNetCrossRef
29.
go back to reference Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MathSciNetMATH Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MathSciNetMATH
30.
go back to reference Xia, Y.H., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)MathSciNetCrossRef Xia, Y.H., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)MathSciNetCrossRef
31.
go back to reference Xia, Y.H.: A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selection. J. Comput. Phys. 280, 248–260 (2015)MathSciNetCrossRef Xia, Y.H.: A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selection. J. Comput. Phys. 280, 248–260 (2015)MathSciNetCrossRef
32.
go back to reference Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for Kdv type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRef Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for Kdv type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRef
33.
go back to reference Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRef Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRef
34.
go back to reference Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systerms of conservation laws. SIAM J. Numer. Anal. 44, 1703–1720 (2006)MathSciNetCrossRef Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systerms of conservation laws. SIAM J. Numer. Anal. 44, 1703–1720 (2006)MathSciNetCrossRef
35.
go back to reference Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)MathSciNetCrossRef Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)MathSciNetCrossRef
Metadata
Title
Stability Analysis and Error Estimates of Semi-implicit Spectral Deferred Correction Coupled with Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations
Authors
Lingling Zhou
Yan Xu
Publication date
17-05-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0735-5

Other articles of this Issue 2/2018

Journal of Scientific Computing 2/2018 Go to the issue

Premium Partner